PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Uniaxial compression test and numerical simulation of rock-like specimen with T-Shaped cracks

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study, the uniaxial compression test and PFC2D numerical simulation were carried out on the artificial rock specimen with T-shaped prefabricated fractures. The effects of the lengths l1, l2 of the main fractures, the length l3 of the secondary fracture, and the angle β between the secondary fracture and the loading direction on the uniaxial compressive strength and crack evolution law of specimen were studied. The research results show that the change of l1, l2 and β has obvious effect on the compressive strength and crack growth of the specimen, but the change of l3 has little effect on the compressive strength of the specimen. When l3 = 40 mm and l1 ≠ l2, the angle β influences on the crack propagation and failure mode of the specimen.
Rocznik
Strony
227--244
Opis fizyczny
Bibliogr. 20 poz., il., tab.
Twórcy
  • School of Civil Engineering and Architecture, East China Jiaotong University, Nanchang, China
autor
  • Geotechnical Engineering Department, Nanjing Hydraulic Research Institute, Nanjing, China
autor
  • Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, China
autor
  • School of Civil Engineering and Architecture, East China Jiaotong University, Nanchang, China
Bibliografia
  • [1] D. Huang, D.M. Gu, C. Yang, R.Q. Huang, and G.Y. Fu, “Investigation on mechanical behaviors of sandstone with two preexisting flaws under triaxial compression”, Rock Mechanics and Rock Engineering, vol. 49, pp. 375-399, 2016, doi: 10.1007/s00603-015-0757-3.
  • [2] H.Q. Li and L.N.Y. Wong, “Numerical study on coalescence of pre-existing flaw pairs in rock-like material”, Rock Mechanics and Rock Engineering, vol. 47, pp. 2087-2105, 2014, doi: 10.1007/s00603-013-0504-6.
  • [3] X.P. Zhang and L.N.Y. Wong, “Crack initiation, propagation and coalescence in rock-like material containing two flaws: a numerical study based on bonded-particle model approach”, Rock Mechanics and Rock Engineering, vol. 46, pp. 1001-1021, 2013, doi: 10.1007/s00603-012-0323-1.
  • [4] Y.L. Zhao, L.Y. Zhang, W.J. Wang, C.Z. Pu, W. Wan, and J.Z. Tang, “Cracking and stress-strain behavior of rock-like material containing two flaws under uniaxial compression”, Rock Mechanics and Rock Engineering, vol. 49, pp. 2665-2687, 2016, doi: 10.1007/s00603-016-0932-1.
  • [5] S.Q. Yang, W.L. Tian, Y.H. Huang, P.G. Ranjith, and Y. Ju, “An experimental and numerical study on cracking behavior of brittle sandstone containing two non-coplanar fissures under uniaxial compression”, Rock Mechanics and Rock Engineering, vol. 49, pp. 1497-1515, 2016, doi: 10.1007/s00603-015-0838-3.
  • [6] S.Q. Yang, “Crack coalescence behavior of brittle sandstone samples containing two coplanar fissures in the process of deformation failure”, Engineering Fracture Mechanics, vol. 78, no. 17, pp. 3059-3081, 2011, doi: 10.1016/j.engfracmech. 2011.09.002.
  • [7] W. Yao, Y.Y. Cai, J. Yu, J.F. Zhou, S.Y. Liu, and B.X. Tu, “Experimental and numerical study on mechanical and cracking behaviors of flawed granite under triaxial compression”, Measurement, vol. 145, pp. 573-582, 2019, doi: 10.1016/j.measurement.2019.03.035.
  • [8] L.X. Xiong, H.Y. Yuan, Y. Zhang, K.F. Zhang, and J.B. Li, “Experimental and numerical study of the uniaxial compressive stress-strain relationship of a rock mass with two parallel joints”, Archives of Civil Engineering, vol. 65, no. 2, pp. 67-80, 2019, doi: 10.2478/ace-2019-0019.
  • [9] J. Yang, H.J. Chen, L.X. Xiong, Z.Y. Xu, T. Zhou, and C.H. Yang, “Analysis of uniaxial compression of rock mass with parallel cracks based on experimental study and PFC2D numerical simulation”, Archives of Civil Engineering, vol. 68, no. 1, pp. 111-128, 2022, doi: 10.24425/ace.2022.140159.
  • [10] M. Sagong and A. Bobet, “Coalescence of multiple flaws in a rock-model material in uniaxial compression”, International Journal of Rock Mechanics & Mining Sciences, vol. 39, no. 2, pp. 229-241, 2002, doi: 10.1016/S1365-1609(02)00027-8.
  • [11] R.H.C. Wong and K.T. Chau, “Crack coalescence in a rock-like material containing two cracks”, International Journal of Rock Mechanics & Mining Sciences, vol. 35, no. 2, pp. 147-164, 1998, doi: 10.1016/S0148-9062(97)00303-3.
  • [12] A. Bobet and H.H. Einstein, “Fracture coalescence in rock-type materials under uniaxial and biaxial compression”, International Journal of Rock Mechanics & Mining Sciences, vol. 35, no. 7, pp. 863-888, 1998, doi: 10.1016/S0148-9062(98)00005-9.
  • [13] P.H.S.W. Kulatilake, B. Malama, and J.L. Wang, “Physical and particle flow modeling of jointed rock block behavior under uniaxial loading”, International Journal of Rock Mechanics & Mining Sciences, vol. 38, no. 5, pp. 641-657, 2001, doi: 10.1016/S1365-1609(01)00025-9.
  • [14] H.W. Lee and S.W. Jeon, “An experimental and numerical study of fracture coalescence in pre-cracked specimens under uniaxial compression”, International Journal of Solids and Structures, vol. 48, no. 6, pp. 979-999, 2011, doi: 10.1016/j.ijsolstr.2010.12.001.
  • [15] S.Q. Yang, Y.H. Huang, H.W. Jing, and X.R. Liu, “Discrete element modeling on fracture coalescence behavior of red sandstone containing two unparallel fissures under uniaxial compression”, Engineering Geology, vol. 178, pp. 28-48, 2014, doi: 10.1016/j.enggeo.2014.06.005.
  • [16] X.P. Zhang, Q.S. Liu, S.C. Wu, and X.H. Tang, “Crack coalescence between two non-parallel flaws in rock-like material under uniaxial compression”, Engineering Geology, vol. 199, pp. 74-90, 2015, doi: 10.1016/j.enggeo.2015.10.007.
  • [17] L.X. Xiong, H.J. Chen, and D.X. Geng, “Uniaxial compression study on mechanical properties of artificial rock specimens with cross-flaws”, Geotechnical and Geological Engineering, vol. 39, pp. 1667-1681, 2021, doi: 10.1007/s10706-020-01584-z.
  • [18] Q. Yin, H.W. Jin, and T.T. Zhu, “Mechanical behavior and failure analysis of granite specimens containing two orthogonal fissures under uniaxial compression”, Arabian Journal of Geosciences, vol. 9, art no. 31, 2016, doi: 10.1007/s12517-015-2078-y.
  • [19] X.W. Liu, Q.S. Liu, Y.S. Kang, and Y.C. Pan, “Improved nonlinear strength criterion for jointed rock masses subject to complex stress states”, International Journal of Geomechanics, vol. 18, no. 3, 2018, doi: 10.1061/(ASCE)GM.1943-5622.0001072.
  • [20] X.W. Liu, Q. S. Liu, B. Liu, Y. G. Zhu, and P.L. Zhang, “Failure behavior for rocklike material with cross crack under biaxial compression”, Journal of Materials in Civil Engineering, 2019, vol. 31, no. 2, 2019, doi: 10.1061/(ASCE)MT.1943-5533.0002540.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-862a8928-6aa3-476d-bb9e-a8826369d650
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.