Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Laser dynamic flexible forming (LDFF) is a novel high velocity forming (HVF) technology, in which the foil metal is loaded by laser shock wave. Strain localization is readily to occur around the bulge edge, which will result in the ultimate dynamic failure. In this work, the microstructures before and after dynamic fracture are characterized by transmission electron microscopy (TEM) to investigate the dynamic failure mechanism. The plastic deformation regions of copper foil are composed of shock compression, strain localization and bulge. Microstructure refinement was observed in three different plastic deformation regions, particularly, dynamic recrystallization (DRX) occurs in the strain localization and bulge regions. In bulge region, extremely thin secondary twins in the twin/matrix (T/M) lamellae are formed. The microstructure features in the strain localization region show that superplastic flow of material exists until fracture, which may be due to DRX and subsequent grain boundary sliding (GBS) of the recrystallized grains. The grain coarsening in strain localization region may degrade the material flowing ability which results in the dynamic fracture.
Wydawca
Czasopismo
Rocznik
Tom
Strony
684--692
Opis fizyczny
Bibliogr. 40 poz., rys.
Twórcy
autor
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
- School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, China
- SUMEC Hardware and Tools Co., Ltd., Nanjing 210032, China
autor
- School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, China
autor
- School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, China
autor
- SUMEC Hardware and Tools Co., Ltd., Nanjing 210032, China
autor
- SUMEC Hardware and Tools Co., Ltd., Nanjing 210032, China
autor
- SUMEC Hardware and Tools Co., Ltd., Nanjing 210032, China
autor
- SUMEC Hardware and Tools Co., Ltd., Nanjing 210032, China
autor
- School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, China
autor
- School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, China
autor
- School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, China
Bibliografia
- [1] DAEHN G.S., High-velocity metal forming: ASM International, Materials Park, Ohio, 2006.
- [2] ZHANG Y., BABU S. S., PROTHE C., BLAKELY M., KWASEGROCH J., LAHA M., J. Mater. Process. Technol., 211 (2011), 944.
- [3] KHARDIN M., HARHASH M., CHERNIKOV D., GLUSHCHENKOV V., PALKOWSKI H., Compos. Struct., 252 (2020), 112729.
- [4] IYAMA H., HIGA Y., NISHI M., ITOH S., Int. J. Mult., 11 (2017), 233.
- [5] LI J., GAO H., CHENG G.J., J. Manuf. Sci. Eng.-Trans., ASME 132 (2010), 061005.
- [6] BARATI DARBAND G., ALIOFKHAZRAEI M., KHORSAND S., SOKHANVAR S., KABOLI A., Arab. J. Chem., 13 (2020), 1763.
- [7] LI J., CHUNG T.F., CHEN Y.P., CHENG G.J., Nano Lett., 12 (2012), 4577.
- [8] XIONG F., YANG H., LIU K., MAN J., CHEN H., Opt. Laser Technol., 120 (2019), 105762.
- [9] JIN S., WANG Y., MOTLAG M., GAO S., XU J., NIAN Q., WU W., CHENG G.J., Adv. Mater., 30 (2018).
- [10] CHOI D.C., KIM H.S., Opt. Lasers Eng., 124 (2020), 105799.
- [11] JIN S., ZHOU Z., SAKR E.S.A., MOTLAG M., HUANG X., TONG L., BERMEL P., YE L., CHENG G.J., Small, 15 (2019), e1900481.
- [12] MAN J., YANG H., WANG Y., CHEN H., XIONG F., Opt. Laser Technol., 119 (2019), 105669.
- [13] SHEN Z., WANG X., LIU H., WANG Y., WANG C., Appl. Surf. Sci., 327 (2015), 307.
- [14] WANG X., DU D., ZHANG H., SHEN Z., LIU H., ZHOU J., Int. J. Mach. Tools Manuf., 67 (2013), 8.
- [15] NAGARAJAN B., CASTAGNE S., WANG Z., ZHENG H. Y., NADARAJAN K., Int. J. Mater. Form., 10 (2017), 109.
- [16] YU C., GAO H., YU H., JIANG H., CHENG G.J., Appl. Phys. Lett., 95 (2009), 091108.
- [17] SHEN Z., ZHANG J., LIU H., WANG X., MA Y., Int. J. Mach. Tools Manuf., 141 (2019), 1.
- [18] BALANETHIRAM V.S., DAEHN G.S., Scr. Mater., 30 (1994), 515.
- [19] JENAB A., GREEN D.E., ALPAS A.T., GOLOVASHCHENKO S.F., J. Mater. Process. Technol., 255 (2018), 914.
- [20] PSYK V., RISCH D., KINSEY B.L., TEKKAYA A.E., KLEINER M., J. Mater. Process. Technol., 211 (2011), 787.
- [21] MYNORS D.J., ZHANG B., J. Mater. Process. Technol., 125 (2002), 1.
- [22] MURR L.E., PIZAÑA C., Metall. Mater. Trans. A-Phys. Metall. Mater. Sci., 38 (2007), 2611.
- [23] CHENG G.J., PIRZADA D., MING Z., J. Appl. Phys., 101 (2007), 063108.
- [24] LIU H.X., HU Y., WANG X., SHEN Z.B., LI P., GU C.X., Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 564 (2013), 13.
- [25] NAGARAJAN B., CASTAGNE S., WANG Z., ZHENG H. Y., Appl. Phys. A-Mater. Sci. Process., 121 (2015), 695.
- [26] SHEN Z., LIU H., WANG X., WANG C., Appl. Surf. Sci., 369 (2016), 288.
- [27] SHEN Z., ZHANG J., LI P., LIU H., YAN Z., MA Y., J. Manuf. Process., 37 (2019), 82.
- [28] WANG K., TAO N.R., LIU G., LU J., LU K., Acta Mater., 54 (2006), 5281.
- [29] LI Y. S., TAO N. R., LU K., Acta Mater., 56 (2008), 230.
- [30] SUN H.Q., SHI Y.N., ZHANG M.X., LU K., Acta Mater., 55 (2007), 975.
- [31] RITTEL D., LANDAU P., VENKERT A., Phys. Rev. Lett., 101 (2008), 165501.
- [32] ESQUIVEL E.V., MURR L.E., Mater. Sci. Eng. A-Struct.Mater. Prop. Microstruct. Process., 409 (2005), 13.
- [33] MISHRA A., KAD B., GREGORI F., MEYERS M., Acta Mater., 55 (2007), 13.
- [34] CAO F., LI Z., ZHANG N., DING H., YU F., ZUO L., Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 571 (2013), 167.
- [35] TAO N.R., LU K., Scr. Mater., 60 (2009), 1039.
- [36] TAYLOR G.I., QUINNEY H., Proc. R. Soc. London Ser. A-Math. Phys. Eng. Sci., A413 (1934), 307.
- [37] RITTEL D., WANG Z.G., MERZER M., Phys. Rev. Lett., 96 (2006), 075502.
- [38] ZENER C., HOLLOMON J. H., J. Appl. Phys., 15 (1944), 22.
- [39] XU Y., ZHANG J., BAI Y., MEYERS M.A., Metall. Mater. Trans. A-Phys. Metall. Mater. Sci., 39 (2008), 811.
- [40] RITTEL D., 9th International Conference on Mechanical and Physical Behaviour of Materials under Dynamic Loading, 2009, p. 955.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-861ee39e-a87e-4efa-9e4c-44a34c979be9