PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Wpływ hydrofobizacji objętościowej związkami krzemoorganicznymi na właściwości i trwałość betonów

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
EN
The influence of internal hydrophobization using organosilicon admixture on the performance and the durability of concrete
Języki publikacji
PL EN
Abstrakty
PL
W artykule przedstawiono wpływ hydrofobizacji objętościowej, wykonanej przy pomocy środka zawierającego trietoksyoktylosilan, na właściwości i trwałość betonu. Podczas badań doświadczalnych określono zmiany: wytrzymałości betonu na ściskanie, absorpcji kapilarnej wody, głębokości wnikania wody pod ciśnieniem oraz głębokości karbonatyzacji próbek poddanych 100 i 150 cyklom mrozowym oraz próbek kontrolnych przechowywanych w wodzie. Otrzymane wyniki wskazują na to, że hydrofobizacja objętościowa jest skuteczną i efektywną metodą ochrony cementowych materiałów budowlanych przed wodą nawet jeśli materiał jest poddawany cyklicznemu zamrażaniu i rozmrażaniu. Dla porównania badania przeprowadzono również dla próbek betonu hydrofobizowanego powierzchniowo.
EN
The main purpose of the study was to analyze the influence of internal hydrophobization, conducted using an admixture based on triethoxyoctylsilane, on the properties and durability of concrete. Experimental studies concerned the measurement of compressive strength, capillary water absorption, depth of water penetration under pressure and carbonation resistance of samples subjected to 100 and 150 freeze-thaw cycles. The obtained results indicate that internal hydrophobization is an effective method of protecting cement-based building materials against water, even if the material was subjected to cyclic freezing. For comparison, the tests were also carried out for surface hydrophobized concrete.
Czasopismo
Rocznik
Strony
225--237
Opis fizyczny
Bibliogr. 45 poz., il., tab.
Twórcy
  • Faculty of Civil Engineering, Architecture and Environmental Engineering, Lodz University of Technology, Łódź, Poland
  • Faculty of Civil Engineering, Architecture and Environmental Engineering, Lodz University of Technology, Łódź, Poland
  • Faculty of Civil Engineering, Warsaw University of Technology, Warszawa, Poland
  • Faculty of Civil Engineering, Architecture and Environmental Engineering, Lodz University of Technology, Łódź, Poland
Bibliografia
  • 1. P. Łukowski, Współczesne domieszki uszczelniające i wspomagające samozaleczanie betonu, Budownictwo, Technologie, Architektura, 1/2020, 64-66, (2020).
  • 2. R. Chen, J. Liu, S. Mu, Chloride ion penetration resistance and microstructural modification of concrete with the addition of calcium stearate. Constr. Build. Mater. 321, 126188, (2022). https://doi.org/10.1016/j.conbuildmat.2021.126188
  • 3. M. Lanzón, P.A. García-Ruiz, Evaluation of capillary water absorption in rendering mortars made with powdered waterproofing additives. Constr. Build. Mater. 23, 3287-3291, (2009). https://doi.org/10.1016/j.conbuildmat.2009.05.002
  • 4. Z. Feng, F. Wang, T. Xie, J. Ou, M. Xue, W. Li, Integral hydrophobic concrete without using silane. Constr. Build. Mater. 227, 116678, (2019).
  • 5. J de Vries, R.B. Polder, Hydrophobic treatment of concrete. Constr. Build. Mater. 11, 259-265, (1997). https://doi.org/10.1016/S0950-0618(97)00046-9
  • 6. G. Moriconi, F. Tittarelli, V. Corinaldesi, Review of silicone-based hydrophobic treatment and admixtures for concrete, Indian Concr. J. 76(10), 637-642, (2002).
  • 7. B. Standke, R. Schafroth, A. Germann, Concrete Protection by means of Internal Hydrophobization. Restor. Build. Monum. 10(2), 181-190, (2004). https://doi.org/10.1515/rbm-2004-5845
  • 8. F. H. Wittmann, Xian, Yong-zhen, Zhao, Tie-jun, F. Beltzung, S, Giessler, Drying and Shrinkage of Integral Water Repellent Concrete. Restor. Build. Monum. 12(3), 229-242, (2006). https://doi.org/10.1515/rbm-2006-6053
  • 9. S.J. Meier, M.F. Bäuml, Internal Impregnation of Concrete by Means of Silanes. Restor. Build. Monum. 12(1), 43-52 (2006). https://doi.org/10.1515/rbm-2006-6022
  • 10. Ch. Zhang, S. Zhang, J. Yu, X. Kong, Water absorption behavior of hydrophobized concrete using silane emulsion as admixture. Cem. Concr. Res. 154, 106738, (2022). https://doi.org/10.1016/j.cemconres.2022.106738
  • 11. Y.G. Zhu, S.C. Kou, C.S. Poon, J.G. Dai, Q.Y. Li, Influence of silane-based water repellent on the durability properties of recycled aggregate concrete. Cem. Concr. Compos. 35, 32-38, (2013). https://doi.org/10.1016/j.cemconcomp.2012.08.008
  • 12. X.M. Kong, H. Liu, Z.B. Lu, D.M. Wang, The influence of silanes on hydration and strength development of cementitious systems. Cem. Concr. Res. 67, 168-178, (2015). https://doi.org/10.1016/j.cemconres.2014.10.008
  • 13. F. Tittarelli, G. Moriconi, The effect of silane-based hydrophobic admixture on corrosion of reinforcing steel in concrete. Cem. Concr. Res. 38, 1354-1357, (2008). https://doi.org/10.1016/j.cemconres.2008.06.009
  • 14. J. González-Coneo, R. Zarzuela, F. Elhaddad, L. M. Carrascosa, M.L. Almoraima Gil, M. J. Mosquera, Alkylsiloxane/alkoxysilane sols as hydrophobic treatments for concrete: A comparative study of bulk vs surface application. J. Build. Eng. 46, 103729, (2022). https://doi.org/10.1016/j.jobe.2021.103729
  • 15. D. Barnat-Hunek, Swobodna energia powierzchniowa jako czynnik kształtujący skuteczność hydrofobizacji w ochronie konstrukcji budowlanych, Politechnika Lubelska, 2016.
  • 16. M. Cypryk, B. Delczyk-Olejniczak, P. Pospiech, K. Strzelec, Modifications of siloxane polymers, Modyfikacje polimerów siloksanowych. Polimery 52, 496-502, (2007).
  • 17. J. Chruściel, E. Leśniak, M. Fejdyś, Carbofunctional silanes and polysiloxanes. Part II. Preparation and applications of carbofunctional polysiloxanes. Polymers, 53, 817-29, (2008).
  • 18. F. Tittarelli, Oxygen diffusion through hydrophobic cement-based materials. Cem. Concr. Res. 39, 924-928, (2009). https://doi.org/10.1016/j.cemconres.2009.06.021
  • 19. K. Grabowska, M. Koniorczyk. Skuteczność hydrofobizacji poprzez zastosowanie domieszek krzemoorganicznych w zaprawie cementowej. Cem. Wapno Beton 24(4) 320-329 (2019). https://doi.org/10.32047/CWB.2019.24.4.7
  • 20. PN-EN 12390-3, 2019, Badania betonu - Część 2: Wykonywanie i pielęgnacja próbek do badań wytrzymałościowych.
  • 21. J. M. Aldred, S. Swaddiwudhipong, S. L. Lee, T. H. Wee, The effect of initial moisture content on water transport in concrete containing a hydrophobic admixture. Mag. Concr. Res. 53, 127-134, (2001). https:doi.org/10.1680/macr.2001.53.2.127
  • 22. M. Koniorczyk, D. Bednarska, A. Wieczorek, W. Maniukiewicz. The single freezing episode of early-age cementitious composites: Threshold properties of cement matrix ensuring the frost resistance. Constr Build Mater. 277, 122319, (2021). https://doi.org/10.1016/j.conbuildmat.2021.122319
  • 23. PN-EN 934-2, 2010, Domieszki do betonu, zaprawy i zaczynu - Część 2: Domieszki do betonu - Definicje, wymagania, zgodność, oznakowanie i etykietowanie.
  • 24. PN-EN 480-5, 2005, Domieszki do betonu, zaprawy i zaczynu - Metody badań - Część 5: Oznaczanie absorpcji kapilarnej.
  • 25. PN-EN 1015-18, 2003, Metody badań zapraw do murów - Część 18: Określenie współczynnika absorpcji wody spowodowanej podciąganiem kapilarnym stwardniałej zaprawy.
  • 26. PN-EN 12390-3, 2019, Badania betonu - Część 3: Wytrzymałość na ściskanie próbek do badań.
  • 27. PN-EN ISO 15148, 2004, Cieplno-wilgotnościowe właściwości użytkowe materiałów i wyrobów budowlanych - Określanie współczynnika absorpcji wody przez częściowe zanurzenie.
  • 28. PN-88/B-06250, 1988, Beton zwykły.
  • 29. PN-EN 12390-12, 2020, Badania betonu - Część 12: Oznaczanie odporności betonu na karbonatyzację - Przyspieszona metoda karbonatyzacji.
  • 30. PN-EN 12390-8, 2019, Badania betonu - Część 8: Głębokość penetracji wody pod ciśnieniem.
  • 31. Y. Zhu, S. Kou, C. Poon, J. Dai, Q. Li, Influence of silane-based water repellent on the durability properties of recycled aggregate concrete. Cem. Concr. Compos. 35, 32-38, (2013). https://doi.org/10.1016/j.cemconcomp.2012.08.008
  • 32. H. Feng, H. Thanh Nam Le, S. Wang, M. Zhang, Effects of silanes and silane derivatives on cement hydration and mechanical properties of mortars. Constr. Build. Mater. 129, 48-60, (2016). https://doi.org/10.1016/j.conbuildmat.2016.11.004
  • 33. A. Stoch, M. Zdaniewicz, Cz. Paluszkiewicz, The effect of polymethylsiloxanes on hydration of clinker phases. J. Molec. Struct. 511-512, 319-325, (1999). https://doi.org/10.1016/S0022-2860(99)00174-X
  • 34. K. Grabowska, M. Koniorczyk, Influence of organosilicon admixtures on the hydration of Portland cement. J Therm Anal Calorim 147, 6131-6145, (2022). https://doi.org/10.1007/s10973-021-10978-x
  • 35. P. Łukowski, Rola polimerów w kształtowaniu właściwości spoiw i kompozytów polimerowo-cementowych, Oficyna Wydawnicza Politechniki Warszawskiej, 2008.
  • 36. P. Łukowski, Modyfikacja materiałowa betonu, Stowarzyszenie Producentów Cementu, 2016.
  • 37. P. Łukowski, Domieszki do zapraw i betonów, Polski Cement, Kraków 2003
  • 38. S. Jahandari, Z. Tao, M. A. Alim, W. Li, Integral waterproof concrete: A comprehensive review. J. Build. Eng. 78, 107718, (2023). https://doi.org/10.1016/j.jobe.2023.107718
  • 39. S. Jahandari, Z. Tao, M.A. Alim, Effects of different integral hydrophobic admixtures on the properties of concrete, Proceedings of the 30th Biennial National Conference of the Concrete Institute of Australia, Perth, Australia, (2021).
  • 40. V. Spaeth, J. Lecomte, M. Delplancke-Ogletree, Integral water repellent based materials: impact of aging on cement microstructure and performances, 7th Int. Conf. on Water Repellent Treatment and Protective Surface Technology for Building Materials, Lisbon, Portugal, 57-66, (2014).
  • 41. H. S. Wong, R. Barakat, A. Alhilali, M. Saleh, C. R. Cheeseman, Hydrophobic concrete using waste paper sludge ash. Cem. Concr. Res. 70, 9-20, (2015). https://doi.org/10.1016/j.cemconres.2015.01.005
  • 42. P. Zhang, F. Wittmann, T. Zhao, Capillary suction of and chloride penetration into integral water repellent concrete. Rev. Bras. Med. 15, 187-194, (2009).
  • 43. K. C. Hover, The influence of water on the performance of concrete. Constr. Build. Mater. 25, 3003-3013, (2011). https://doi.org/10.1016/j.conbuildmat.2011.01.010
  • 44. Z. Ma, F.H. Wittmann, J. Xiao, T. Zhao, Influence of freeze-thaw cycles on properties of integral water repellent concrete, J. Wuhan Univ. Technol. Mater. Sci. Ed. 31, 851-856, (2016).
  • 45. P. Rogers, J. Silfwerbrand, A. Gram, A. Selander, Bulk hydrophobic civil engineering concrete for nordic conditions: freeze thaw action. fib symposium 2019, concrete-innovations in materials, design and structures, Krakow, Poland, The International Federation for Structural Concrete, 2044-2051, (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-861da3da-12dd-4334-8ece-069160099ddf
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.