Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
There are two methods to produce primary copper: hydrometallurgical and pyrometallurgical. Copper concentrates, from which copper matte is melted, constitute the charge at melting primary copper in the pyrometallurgical process. This process consists of a few stages, of which the basic ones are roasting and smelting. Smelting process may be bath and flash. Slag from copper production, on the end of process contain less 0,8%. It is treat as a waste or used other field, but only in a few friction. The slag amount for waste management or storage equaled 11 741 – 16 011 million tons in 2011. This is a serious ecological problem. The following slags were investigated: slag originated from the primary copper production process in the flash furnace of the Outtokumpuja Company in HM Głogów 2 (Sample S2): the same slag after the copper removal performed according the up to now technology (Sample S1): slag originated from the primary copper production process in the flash furnace of the Outtokumpuja Company in HM Głogów 2, after the copper removal performed according the new technology (Sample S3). In practice, all tested slags satisfy the allowance criteria of storing on the dumping grounds of wastes other than hazardous and neutral.
Czasopismo
Rocznik
Tom
Strony
191--195
Opis fizyczny
Bibliogr. 22 poz., tab.
Twórcy
autor
- AGH University of Science and Technology, Faculty of Foundry Engineering, Reymonta 23, 30-059 Krakow, Poland
autor
- Zielona Góra University, Mechanical Department, St. Podgórna 50, 65-246 Zielona Góra, Polan
autor
- Institute of Metallurgy and Materials Science of Polish Academy of Sciences, Krakow, Poland
autor
- AGH University of Science and Technology, Academic Centre for Materials and Nanotechnology, al. A. Mickiewicza 30, 30-059 Krakow, Poland
Bibliografia
- [1] Patel, S., Shahu, J.T. & Senapati, A. (2012). Feasibility of copper slag – fly ash mix as a road construction material. ACEE Int. J. on Transportation and Urban Development. 2(1), 111-114.
- [2] Purna S. et al. (2014). Use of cooper slag as sustainable aggregate. Proceedings of ICSC, ASCE India Section, Hitex, Hyderabad, Telangana, India.
- [3] Sanche, M. & Subury, M. (2013). Physicochemical charcterization of copper slag and alternnatives of frieddly environmental management. Journal of Mining and Metallurgy Section B: Metallurgy. 49(2) B, 161-168.
- [4] Shi, C., Meyer, C. & Behnood, A. (2008). Utilization of copper slag in cemente and concrete. Resources, Conservation and Recycling. 52, 1115-1120.
- [5] Queneau, P.B., Cregar, D.E., May, L.D. (1991). Application of slag technology to recycling of solid waste. SME Annual Meeting, Denver, CO, USA 02/25-28/91.
- [6] Mavroulidou, M., Liya, N. (2015). Properties of concrete containing waste copper slag as a fine aggregate replacement. Proceedings of the 14th International Conference on Environmental Science and Technology, Rhodes, Greece.
- [7] Bydałek, A.W., Bydałek, A. (2011). Metallurgy of copper and its alloys. (Metalurgia miedzi i jej stopów – in Polish).
- Monography. Głogow: Publishing PWSZ. ISBN 978-83- 928568-6-9.
- [8] Brown, B. et al. (2013) European Mineral Statistics 2007- 2011, BREF 2014.
- [9] Gorai, B., Jana, R.K. & Premchand, A. (2003), Characteristic and utilization of copper slag - a review. Resources Conservation and Recycling. 39(4), 299-313.
- [10] Alter, H. (2005). The composition and environmental hazard of copper slags in the context of the basel convention. Resources, Conservation and Recycling. 43, 353-360.
- [11] De Britto, J., Saikia, N. (2013). Recycled Aggregate in Concrete. London: Publisher Springer-Verlag. ISBN 978-1- 4471-4540-0.
- [12] Bydałek, A.W., Biernat, S., Schlafka, P., Holtzer, M., Wołczyński, W. & Bydałek, F. (2016). The Influence of the Chemical Composition of Selected Waste Materials from the Production of Copper on the Final Environmental Assessment. Archives of Metallurgy and Materials. 61(4), 2135-2140.
- [13] Sosin, J. et al. (1994), PL – 164646, Polish patent RP.
- [14] Zajączkowski, A., Botor, J., Czernecki, J., Bratek, S. (2012). PL-210377, Polish Patent RP.
- [15] Kucharski, M., Rogóż, M. (2013). PL – 213767, Patent RP.
- [16] Bydałek, A. (1971). The calcium carbide copper rafinaction. Chem. Process.10, 27-31.
- [17] Bydałek, A.W. (1998). Slag and oxide-carbon systems in the process of melting copper and its alloys. Zielona Góra: Monography no 86. (in Polish).
- [18] Bydałek, A.W. (2011). Role of carbon in the melting copper processes. Archives of Foundry Engineering. 11(3), 37-42.
- [19] Kunze, J. et al. (2009), US patent 014063 A1.
- [20] Bydałek, A.W. (2001). Assessing the refining abilities of slags by modelling a real process of metal. Journal of Thermal Analysis and Calorymetry. 65, 591-597.
- [21] Wołczyński, W., Karwan-Baczewska, J., Najman, K. & Bydałek, A.W. (2016). Reagents Activity in a Copper Droplets /Post-Processing Slag Suspension. Archives of Foundry Engineering. 16(3), 147-150.
- [22] Polish Standard (2006) PN-EN 12457–4.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-861bfdf4-d324-4d7c-b131-df3cb197990b