PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Experimental study on the slime flotation process of low-rank steam coal by the small cone angle hydrocyclone group

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Considering that the clay content in the western Liaoning region is high, the dominant fraction is <0.045 mm high ash in fine-grained low thermal coal and coal slurry. Self-developed CMC (Cone type Multi-stage Cyclone) multiple multistage small cone angle hydrocyclone groups are used for desliming flotation experiment research, product particle size analysis, hydrocyclone underflow product order evaluation tests and flotability evaluation. The results showed that 150 mm hydrocyclones with small cone angles are more suitable as the main desliming equipment before flotation than those with 75 mm and 50 mm hydrocyclones with small cone angles, but the bottom abortion rate is lower, and the phenomenon of “overflow running” is more serious. In the deslime-flotation process of the CMC multistage and small-cone angle hydrocyclone groups, the removal rate of fine particles with ash contents of 69.82% <0.045 mm in the original coal slime reaches 64.43%, basically solved the problem of “overflow and coarse running” of cyclones, and high ash fine clay minerals such as kaolin were enriched in the overflow. The group of three kinds of CMC hydrocyclone underflow products due to their different size widths shows that the flotability of the three underflows can be mixed into the float. Compared with raw coal direct flotation plants, the yield and combustible recovery rate can increase 2-3 times, and the floatability level is increased from extremely difficult to float to difficult to float, which can also be used for the underflow product floatability. The flotation process is different, strengthening the graded plant recycling process and providing a technological reference for better realization of narrows lime flotation.
Rocznik
Strony
571--585
Opis fizyczny
Bibliogr. 25 poz., rys., tab., wykr.
Twórcy
autor
  • National Energy Group Shendong Coal Group Company, Yulin, Shanxi, China
autor
  • School of Mining, Liaoning Technical University, Fuxin, China
autor
  • National Energy Group Shendong Coal Group Company, Yulin, Shanxi, China
  • National Energy Group Yulin Energy Co., Ltd, Washing Center, Yulin, Shanxi, China
autor
  • Liaoning Nonferrous Investigation Research Institute Company, Shenyang 110013, China
  • School of Mining, Liaoning Technical University, Fuxin, China
autor
  • School of Mining, Liaoning Technical University, Fuxin, China
Bibliografia
  • [1] K.P. Galvin, J. Zhou, J.E. Dickinson, H. Ramadhani, Desliming of dense minerals in fluidized beds. Miner. Eng. 39, 9-18 (2012). DOI: https://doi.org/10.1016/j.mineng.2012.06.013.
  • [2] R.K. Dwari, K.H. Rao, Dry Beneficiation of Coal – A Review. Mineral Processing and Extractive Metallurgy Review 28, 3 (2007). DOI: https://doi.org/10.1080/08827500601141271.
  • [3] T. Grzybek, R. Pietrzak, H. Wachowska, The influence of oxidation with air in comparison to oxygen in sodium carbonate solution on the surface composition of coals of different ranks. Fuel 85, 7/8, 1016-1023 (2006). DOI: https://doi.org/10.1016/j.fuel.2005.09.017.
  • [4] Mao Yuqiang, et al. Ultrasonic-assisted flotation of fine coal: A review. Fuel Processing Technology 195 (2019). DOI: https://doi.org/10.1016/j.fuproc.2019.106150.
  • [5] Yu. Laskowski Zhimin, Oil agglomeration and its effect on beneficiation and filtration of low-rank/oxidized coals. International Journal of Mineral Processing (2000). DOI: https://doi.org/10.1016/S0301-7516(99)90040-6.
  • [6] M. Fan, D. Tao, R. Honaker, Z. Luo, Nanobubble generation and its applications in froth flotation (Part II): Fundamental study and theoretical analysis. Min. Sci. Technol. (China) 20 (2),159-77 (2010).
  • [7] Xia, Feng Niu, Chenkai, Enhanced flotation selectivity of fine coal from kaolinite by anionic polyacrylamide preconditioning. Journal of Molecular Liquids 334, 1 (2021).
  • [8] X. Zheng, N.W. Johnson, J.P. Franzidis, Modelling of entrainment in industrial flotation cells: water recovery and degree of entrainment. Miner. Eng. 19 (11), 1191-203 (2006).
  • [9] L. Wang, Y. Peng, K. Runge, D. Bradshaw, A review of entrainment: mechanisms, contributing factors and modelling in flotation. Miner. Eng. 70, 77-91 (2015). DOI: https://doi.org/10.1016/j.mineng.2014.09.003.
  • [10] X. Gui, Y. Xing, C. Li, L. Xia, Z. Yang, Y. Wang, M. Xu, D. Wang, X. Xu, Coal Sci. Technol. 44 (6), 175-181 (2016). DOI: https://doi.org/10.13199/j.cnki.cst.2016.06.029.
  • [11] X.H. Guo, G. Cheng, J.T. Liu, S.L. Li, Y.T. Wang, Y.J. Cao, Process Characteristics of Heterogeneous Fine Mud in Flotation of Coal Slime. Journal of China Coal Society 37 (2), 301-309 (2012).
  • [12] X. Shu, Z. Wang, J. Xu, Separation and Preparation of Macerals in Shenfu Coals by Flotation. Fuel 81 (4), 495-501 (2002). DOI: https://doi.org/10.1016/S0016-2361(01)00106-5.
  • [13] G.J. Jameson, Advances in Fine and Coarse Particle Flotation. Can. Metall. Quart. 49 (4), 325-330 (2010). DOI: https://doi.org/10.1179/cmq.2010.49.4.325.
  • [14] William J. Oats, Orhan Ozdemir, Anh V. Nguyen, Effect of mechanical and chemical clay removals by hydrocyclone and dispersants on coal flotation. Minerals Engineering 23, 413-419 (2010). DOI: https://doi.org/10.1016/j.mineng.2009.12.002.
  • [15] R. Ren, Z. Zheng, D. Sun, G. Cheng, Q. Dong, J. Zhao, Experimental Study on Quality Improvement of Refractory Tail Coal by Grinding and Classification Flotation. Coal Conversion 42 (2), 72-77 (2019). DOI: https://doi.org/10.19726/j.cnki.ebcc.201902011.
  • [16] China Coal Industry Association (2008). GB/T 477-2008. General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China; Standardization Administration of China.
  • [17] L. Chu, W. Chen, et al, Hydrocyclone, Chemical Industry Press, Beijing (1998).
  • [18] G.L. Wei, Experimental Study on Classification and Separation Effect of Compound Slime Cyclone. Coal Sci. Technol. 42, 477 (08), 113-116 (2014). DOI: https://doi.org/10.13199/j.cnki.cst.2014.08.028.
  • [19] Z. Li, Y. Yang, H. Hu, Modern Mining 37 (11), 138-141 (201).
  • [20] K. Wei, Q. Zhao, X. Cui, J. He, R. Ao, Numerical Test Research on Influence of Cone Angle on Flow Field and Separation Performance of Hydrocyclone. Metal Mine (4), 147-153 (2019). DOI: https://doi.org/10.19614/j.cnki.jsks.201904028.
  • [21] G. Xie, L. Wu, Z. Ou, Journal of China University of Mining & Technology (6), 78-82 (2005).
  • [22] R. Ren, M. Cheng, G. Zhang, et al., Experimental Study on Deslime Flotation Process of Refractory Coal Slime with Small Cone Angle Hydrocyclone. Journal of China Coal Society 39 (3), 6 (2014).
  • [23] GB/T 30047-2013, Coal (mud) floatability evaluation method [S].
  • [24] H. Shi, Experimental Method for Sequential Evaluation of Pulverized Coal (Mud). Coal Preparation Technology (1), 12-15 (2012). DOI: https://doi.org/10.16447/j.cnki.cpt.2012.01.005.
  • [25] GB/T 30046.2-2013, Flotation Test of Pulverized Coal (Mud) – Part 2: Sequential Evaluation Test Method.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-861a93af-6166-46a5-8ff0-e823e7a78e11
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.