Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Local single cell microalgae isolated from a wastewater swamp and identified as Scenedesmus obliquus was used to determine its applicability for utilization of domestic wastewater for biomass and lipid production. Secondary treated domestic wastewater with or without mixing of growth medium was used to cultivate S. obliquus for the biomass and lipid production as a renewable feedstock for biodiesel. S. obliquus showed the highest OD when grown in 100% Bold’s basal medium (BBM). S. obliquus utilized 95.2% and 78.5% of P and N contents, respectively, when grown in 25% WW+75% BBM mixture and the utilization efficiency of both elements decreased with the increasing wastewater portion in the mixture. Although the BBM displayed the highest dry biomass and lipid production (25.15% of the cell dry biomass). The lowest values were recorded for the uninoculated wastewater, followed by 100% wastewater enriched with S. obliquus. The obtained data revealed that the lipid classes of S. obliquus differs according to the cultivation medium and conditions. The highest percentage of C16-C18 fatty acids (54.76% from total lipids) were recorded in case of algae cultivated in 100% wastewater, followed by 46.96% in case of 100% BBM medium. These results suggest the utilization of mixtures containing a higher portion of secondary treated wastewater, such as 75% WW+25% BBM or 50% WW+50% BBM, could increase the economical production of the lipid-rich microalgae S. obliquus for biodiesel through saving water and nutrients.
Czasopismo
Rocznik
Tom
Strony
38--51
Opis fizyczny
Bibliogr. 57 poz., rys., tab.
Twórcy
autor
- Agricultural Microbiology Department, National Research Centre, Giza, Egypt
autor
- Agricultural Microbiology Department, National Research Centre, Giza, Egypt
autor
- Agricultural Microbiology Department, National Research Centre, Giza, Egypt
Bibliografia
- 1. Abou-Shanab R.A., Ji M.K., Kim H.C., Paeng K.J., Jeon B.H. 2013. Microalgal species growing on piggery wastewater as a valuable candidate for nutrient removal and biodiesel production. J Environ Manage; 115, 257–264.
- 2. Ahmad AL, Yasin NM, Derek CJ, Lim JK. 2011. Microalgae as a sustainable energy source for biodiesel production, a review. Renew Sust Energ Rev; 15(1), 584–593.
- 3. Akpor OB, Momba MN, Okonkwo J. 2007. Phosphorus and nitrate removal by selected wastewater protozoa isolates. Pak J Biol Sci; 10(22), 4008–14.
- 4. Álvarez-Díaz PD, Ruiz J, Arbib Z, Barragán J, Garrido-Pérez MC, Perales JA. 2015. Wastewater treatment and biodiesel production by Scenedesmus obliquus in a two-stage cultivation process. Bioresour Technol; 181, 90–96.
- 5. Amin NF, Khalafallah MA, Ali MA, Abou-Sdera SA, Matter IA. 2013. Effect of some nitrogen sources on growth and lipid of microalgae Chlorella sp. for biodiesel production. J Appl Scis Res; 9(8), 4845–4855.
- 6. Ansari FA, Singh P, Guldhe A, Bux F. 2017. Microalgal cultivation using aquaculture wastewater, Integrated biomass generation and nutrient remediation. Algal Res; 21, 169–177.
- 7. Basova EM, Bulanova MA, Ivanov VM. 2011. Photometric detection of urea in natural waters. Mosc Univ Chem Bull; 66(6), 345–50.
- 8. Bellinger EG, Sigee DC. 2015. Freshwater algae, identification and use as bioindicators. John Wiley and Sons.
- 9. Berkman JAH, Canov MG. 2007. Algal biomass indicators. Version 1.0 8. U.S. Geological Survey TWRI Book.
- 10. Bharathiraja B, Jayamuthunagai J, Chakravarthy M, Kumar RR, Yogendran D, Praveenkumar R. 2015. Algae, Promising Future Feedstock for Biofuels. In: Singh B, Bauddh K, Bux F, eds. Algae and Environmental Sustainability. Springer India; 1–8.
- 11. Bisht TS, Pandey M, Pande V. 2016. Impact of different nitrogen sources on biomass growth and lipid productivity of Scenedesmus sp. for biodiesel production. J Algal Biomass Utln; 7(4), 8–36.
- 12. Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol 1959;37(8), 911–7.
- 13. Boyce DG, Lewis MR, Worm B. 2010. Global phytoplankton decline over the past century. Nature; 466(7306), 591–596.
- 14. Darwesh OM, Moawad H, Wafaa MA, Olfat SB, Sedik MZ. 2014. Bioremediation of textile Reactive Blue (RB) azo dye residues in wastewater using experimental prototype bioreactor. J Environ Health Scis Eng; 5(4), 1203–1219.
- 15. De-Nardo L.U. 1929. The pyrogallol method for the determination of nitrates in soil and waters. Giorn Chim Ind Appl; 11, 107–9.
- 16. El-Baz FK, Gad MS, Abdo SM, Abed KA, Matter IA. 2016. Performance and exhaust emissions of a diesel engine burning algal biodiesel blends. Int J Mech Mech Eng; 16(3), 150–157.
- 17. Griffiths MJ, Harrison ST. 2009. Lipid productivity as a key characteristic for choosing algal species for biodiesel production. J App Phyc; 21(5), 493–507.
- 18. Guldhe A, Singh B, Rawat I, Bux F. 2014. Synthesis of biodiesel from Scenedesmus sp. by microwave and ultrasound assisted in situ transesterification using tungstated zirconia as a solid acid catalyst. Chem Eng Res Des; 92(8), 1503–1511.
- 19. Hakalin NL, Paz AP, Aranda DA, Moraes LMP. 2014. Enhancement of cell growth and lipid content of a freshwater microalga Scenedesmus sp. by optimizing nitrogen, phosphorus and vitamin concentrations for biodiesel production. Natu Scie; 6, 1044–1054.
- 20. Hodaifa G, Martínez ME, Sánchez S. 2008. Use of industrial wastewater from olive-oil extraction for biomass production of Scenedesmus obliquus. Bioresour Technol; 99(5), 1111–1117
- 21. Hosikian A, Lim S, Halim R, Danquah MK. 2010. Chlorophyll extraction from microalgae: a review on the process engineering aspects. Int J Chem Eng doi:10.1155/2010/391632.
- 22. Ichihara KI, Fukubayashi Y. 2010. Preparation of fatty acid methyl esters for gas-liquid chromatography. J Lipid Res;51(3), 635–40.
- 23. Jena J, Nayak M, Panda HS, Pradhan N, Sarika C, Panda PK, Rao BV, Prasad RB, Sukla LB. 2012. Microalgae of Odisha coast as a potential source for biodiesel production. World Environ; 2(1), 11–16.
- 24. Ji MK, Yun HS, Park YT, Kabra AN, Oh IH, Choi J. 2015. Mixotrophic cultivation of a microalga Scenedesmus obliquus in municipal wastewater supplemented with food wastewater and flue gas CO2 for biomass production. J Environ Manage; 159, 115–120.
- 25. Juneja A, Ceballos RM, Murthy GS. 2013. Effects of environmental factors and nutrient availability on the biochemical composition of algae for biofuels production: a review. Energies; 6(9), 4607–4638.
- 26. Klieve JR, Semmens MJ. 1980. An evaluation of pretreated natural zeolites for ammonium removal. Water Res; 14(2), 161–168.
- 27. Lee RE. Phycology. Cambridge University Press; 2008.
- 28. Li X, Xu H, Wu Q. 2007. Large- scale biodiesel production from microalga Chlorella protothecoides through heterotrophic cultivation in bioreactors. Biotechnol Bioeng; 98(4), 764–771.
- 29. Lv J, Feng J, Liu Q, Xie S. 2017. Microalgal cultivation in secondary effluent: Recent developments and future work. Int J Mol Sci; 18(1), 79. doi:10.3390/ijms18010079.
- 30. Lyon SR, Ahmadzadeh H, Murry MA. 2015. Algaebased wastewater treatment for biofuel production: processes, species, and extraction methods. In: Moheimani N R, McHenry M P, de Boer K, Bahri P A, eds. Biomass and Biofuels from Microalgae. Springer International Publishing, 95–115.
- 31. MacIntyre HL, Kana TM, Anning T, Geider RJ. 2002. Photoacclimation of photosynthesis irradiance response curves and photosynthetic pigments in microalgae and cyanobacteria. J Phycol; 38(1), 17–38.
- 32. Madkour FF, Kamil A, Nasra HS. 2012. Production and nutritive value of Spirulina platensis in reduced cost media. Egypt J Aqua Res; 38, 51–57.
- 33. Maity JP, Bundschuh J, Chen CY, Bhattacharya P. 2014. Microalgae for third generation biofuel production, mitigation of greenhouse gas emissions and wastewater treatment: Present and future perspectives–A mini review. Energy; 78, 104–113.
- 34. Mandal S, Mallick N. 2009. Microalga Scenedesmus obliquus as a potential source for biodiesel production. Appl Microbiol Biot; 84(2), 281–291.
- 35. Mandal S, Mallick N. 2011. Waste utilization and biodiesel production by the green microalga Scenedesmus obliquus. Appl Environ Microb; 77(1), 374–377.
- 36. Martinez-Jeronimo, F, Espinosa-Chavez, F. 1994. A laboratory-scale system for mass culture of fresh water microalgae in polyethylene bags. J Appl Phycol; 6, 423–425.
- 37. Mata MT, Melo AC, Meireles S, Mendes AM, Martins AA, Caetano NS. 2013. Potential of microalgae Scenedesmus obliquus grown in brewery wastewater for biodiesel production. Chem Eng Trans; 32, 901–906.
- 38. Mata TM, Martins AA, Caetano, NS. 2010. Microalgae for biodiesel production and other applications: a review. Renew Sustainable Energy Rev; 14(1), 217–232.
- 39. Matter I.A, Darwesh O.M, El-baz F.K. 2016. Using the natural polymer chitosan in harvesting Scenedesmus species under different concentrations and cultural pH values. Int J Pharm Bio Sci, 7(4), 254–260.
- 40. Meher LC, Sagar DV, Naik SN. 2006. Technical aspects of biodiesel production by transesterification–a review. Renew Sust Energ Rev; 10(3), 248–268.
- 41. Meng X, Yang J, Xu X, Zhang L, Nie Q, Xian M. 2009. Biodiesel production from oleaginous microorganisms. Renew Energ; 34(1), 1–5.
- 42. Min M, Wang L, Li Y, Mohr MJ, Hu B, Zhou W, Chen P, Ruan R. 2011. Cultivating Chlorella sp. in a pilot-scale photobioreactor using centrate wastewater for microalgae biomass production and wastewater nutrient removal. Appl Biochem Biotechnol; 165, 123–137.
- 43. Mobin S, Alam F. 2014. Biofuel production from algae utilizing wastewater. in: 19th Australasian Fluid Mechanics Conference Melbourne, 2014, Australia. Australia: RMIT University, 8–11.
- 44. Moore JW, Schindler DE. 2008. Biotic disturbance and benthic community dynamics in salmon-bearing streams. J Anim Ecol; 77(2), 275–284.
- 45. Pizarro C, Mulbry W, Blersch D, Kangas P. 2006. An economic assessment of algal turf scrubber technology for treatment of dairy manure effluent. Ecol Eng; 26(4), 321–327.
- 46. Rainer S, Arne N, Diethard T. 2007. An evaluation of LSU rDNA D1-D2 sequences for their use in species identification. Front Zool; 4(1), 6. doi:10.1186/1742–9994–4-6.
- 47. Ramanna L, Guldhe A, Rawat I, Bux F. 2014. The optimization of biomass and lipid yields of Chlorella sorokiniana when using wastewater supplemented with different nitrogen sources. Bioresour Technol; 168, 127–135.
- 48. Richmond A. 2008. Handbook of microalgal culture: biotechnology and applied phycology. John Wiley and Sons.
- 49. Rodolfi L, Chini Zittelli G, Bassi N, Padovani G, Biondi N, Bonini G, Tredici MR. 2009. Microalgae for oil: Strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol bioeng; 102(1), 100–112.
- 50. Tang D, Han W, Li P, Miao X, Zhong J. 2011. CO2 biofixation and fatty acid composition of Scenedesmus obliquus and Chlorella pyrenoidosa in response to different CO2 levels. Bioresour Technol; 102(3), 3071–3076.
- 51. Toyub MA, Miah MI, Habib MAB, Rahman MM. 2008. Growth performance and nutritional value of Scenedesmus obliquus cultured in different concentrations of sweetmeat factory waste media. Bang J Anim Sci; 37(1), 86–93.
- 52. Vasileva I, Marinova GV, Gigova LG. 2015. Effect of nitrogen source on the growth and biochemical composition of a new Bulgarian isolate of Scenedesmus sp. J. Biosci Biotechnol;125–129.
- 53. Wang C, Yu X, Lv H, Yang J. 2013. Nitrogen and phosphorus removal from municipal wastewater by the green alga Chlorella sp. J Environ Biol; 34(2), 421–425.
- 54. Wilkie AC, Mulbry WW. 2002. Recovery of dairy manure nutrients by benthic freshwater algae. Bioresour Technol; 84(1), 81–91.
- 55. Xin L, Hong-ying H, Ke G, Ying-xue S. 2010. Effects of different nitrogen and phosphorus concentrations on the growth, nutrient uptake, and lipid accumulation of a freshwater microalga Scenedesmus sp. Bioresour Technol; 101(14), 5494–5500.
- 56. Xu H, Miao X, Wu Q. 2006. High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters. J Biotechnol; 126(4), 499–507.
- 57. Zhang Y, Su H, Zhong Y, Zhang C, Shen Z, Sang W, Yan G, Zhou X. 2012. The effect of bacterial contamination on the heterotrophic cultivation of Chlorella pyrenoidosa in wastewater from the production of soybean products. Water Res; 46, 5509–5516.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8617a0ea-b732-4510-96b5-b19811e1c5be