Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This study provides a thorough analysis of the impact of different image file formats on the accuracy of photogrammetric studies using non-metric cameras. It specifically examines three widely used data storage formats: digital RAW negatives, lossless TIFF files, and compressed JPEG files, evaluating their effectiveness across various measurement conditions. The research involved photogrammetric measurements of two distinct test objects, providing a basis to evaluate how the choice of equipment and data format influences the quality of the resulting 3D models. The findings from this study highlight that the RAW format offers the highest quality and fidelity of detail in photogrammetric models, which is particularly crucial for professional applications where extreme accuracy is required. Conversely, the TIFF format, while balancing quality and file size, introduces minor geometric errors that might be acceptable in applications with less stringent accuracy demands. The JPEG format, although the most efficient in terms of file size reduction, shows the greatest level of distortion and the lowest level of model geometry accuracy. This is attributed to the lossy nature of JPEG compression, which significantly compromises the precision needed for high-quality photogrammetric output. Consequently, the study underscores the importance of selecting the appropriate file format based on the specific accuracy requirements of the photogrammetric task at hand.
Czasopismo
Rocznik
Tom
Strony
87--100
Opis fizyczny
Bibliogr. 40 poz., rys.
Twórcy
- Geodetic Students Society, Faculty of Environmental Engineering and Land Surveying, University of Agriculture in Krakow
autor
- Department of Agricultural Land Surveying, Cadastre and Photogrammetry, University of Agriculture in Krakow
Bibliografia
- Adobe Systems Inc. Digital Negative Specifications. 2012.
- Albertz J., Wiedemann A. 1995. From Analogue to Digital Close-Range Photogrammetry. Proceedings of the First Turkish-German Joint Geodetic Days. Istanbul, Turkey, 245–253.
- Alfio V.S., Costantino D., Pepe M. 2020. Influence of image TIFF format and JPEG compression level in the accuracy of the 3D model and quality of the orthophoto in UAV. Journal of Imaging, 11, 6(5), 30.
- Baqersad J., Poozesh P., Niezrecki C., Avitabile P. 2017. Photogrammetry and optical methods in structural dynamics – A review. Mechanical Systems and Signal Processing, 1, 86, 17–34.
- Barrile V., Bilotta G., Lamari D., Meduri G.M. 2015. Comparison between techniques for generating 3D models of cultural heritage. Recent Advances in Mechanics, Mechatronics, Civil, Chemical and Industrial Engineering, Mathematics, and Computer Science and Engineering Series, 49, 140–145.
- Besl P., McKay N. 1992. A method for registration of 3-d shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 14(2), 239–256.
- Boroń A., Rzonca A., Wróbel A. 2007. The digital photogrammetry and laser scanning methods used for heritage documentation. Roczniki Geomatyki, 5(8), 129–140 (in Polish).
- Burley B., Lacewell D.P. 2008. Ptex: Per-face texture mapping for production rendering. Eurographics Association, 1155–1164.
- Chang E., Cheung S., Pan D. 1999. Color filter array recovery using a threshold-based variable number of gradients. Proceedings of SPIE, 3650, 36.
- Chang N.L., Tan N.Y.P. 2004. Effective use of spatial and spectral correlations for color filter array demosaicking. IEEE Transactions on Consumer Electronics, 50(1), 355–365.
- Clevy L. 2013. Inside the Canon RAW format version 2.
- Daakir M., Zhou Y., Deseilligny M.P., Thom C., Martin O., Rupnik E. 2019. Improvement of photogrammetric accuracy by modeling and correcting the thermal effect on camera calibration. ISPRS Journal of Photogrammetry and Remote Sensing, 148,142–155.
- Dlesk A., Uueni A., Vach K., Pärtna J. 2020. From Analogue to Digital Photogrammetry: Documentation of Padise Abbey in two different time stages. Applied Sciences, 10(23), 8330.
- Fraser C.S. 2013. Automatic camera calibration in close range photogrammetry. Photogrammetric Engineering and Remote Sensing, 79(4), 381–388.
- Giuliano M.G. 2014. Cultural Heritage: An example of graphical documentation with automated photogrammetric systems. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XL-5, 251–255.
- Gołka J., Haliński J. 1998. The use of digital photogrammetry in architectural studies on the example of the front elevation of the Town Hall in Zamość. Archiwum Fotogrametrii, Kartografii i Teledetekcji, 8 (in Polish).
- Gołka J., Haliński J. 2000. Digital photogrammetry in architecture – new possibilities for stocktaking and archiving objects. Archiwum Fotogrametrii, Kartografii i Teledetekcji, 10 (in Polish).
- Gonzales R.C., Woods R.E. 2002. Digital image processing. 2nd ed. Prentice Hall, Upper Saddle River, NJ, p. 797.
- Hegde G.P., Hegde N., Muralikrishna I. 2012. Measurement of quality preservation of pansharpened image. International Journal of Engineering Research and Development, 2, 12–17.
- Hermanowski A. 1978. Mean observation errors in horizontal grids aligned with tie-in conditions. Instytut Geodezji i Kartografii (in Polish).
- Howland M.D., Tamberino A., Liritzis I., Levy T.E. 2022. Digital deforestation: Comparing automated approaches to the production of digital terrain models (DTMs) in Agisoft Metashape. Quaternary, 14, 5(1), 5.
- Ippoliti E., Meschini A., Sicuranza F. 2015. Structure from motion systems for architectural heritage. A survey of the internal loggia courtyard of Palazzo del Capitani Ascoli Piceno, Italy. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XL-5/W4, 53–60.
- Kabadayi A., Erdoğan A. 2022. Application of terrestrial photogrammetry method in cultural heritage studies: A case study of Seyfeddin Karasungur. Mersin Photogrammetry Journal, 4(2), 62–67.
- Kiefner M., Hahn M. 2000. Image compression versus matching accuracy. International Archives of the Photogrammetry, Remote Sensing, 33, 316–323.
- Kingsland K. 2020. Comparative analysis of digital photogrammetry software for cultural heritage. Digital Applications in Archaeology and Cultural Heritage, 18, e00157.
- Kraus K. 1993. Photogrammetry. Dümmler, Bonn.
- Linder W. 2013. Digital photogrammetry: theory and applications. Springer Science & Business Media.
- Maiwald F., Vietze T., Schneider D., Henze F., Münster S., Niebling F. 2017. Photogrammetric analysis of historical image repositories for virtual reconstruction in the field of digital hu manities. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-2/W3, 447–452.
- Orych A., Walczykowski P., Jenerowicz A., Zdunek Z. 2014. Impact of the cameras radiometric resolution on the accuracy of determining spectral reflectance coefficients. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XL-1, 347–349.
- Panchanathan S., Gamaz N., Jain A.K. 1996. JPEG based scalable image compression. Computer Communications, 1, 19(12), 1001–1013.
- Parulski K., Spaulding K. 2003. Color image processing for digital cameras. In: Digital Color Imaging Handbook, 728–757.
- Rajendra Y.D., Mehrotra S.C., Kale K.V., Manza R.R., Dhumal R.K., Nagne A.D. 2014. Evaluation of partially overlapping 3D point cloud’s registration by using ICP variant and CloudCompare. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XL, 8, 891–897.
- Reina Ortiz M., Yang C., Weigert A., Dhanda A., Min A., Gyi M., Su S., Fai S., Santana Quintero M. 2019. Integrating heterogeneous datasets in HBIM of decorated surfaces. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-2/W,15, 981–988.
- Scianna A., La Guardia M. 2017. Main features of a 3D GIS for a monumental complex with historical-cultural relevance. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 42, 519–526.
- Smith M.J., Priestnall G., Asal F. 2000. Combining LIDAR and photogrammetry for urban and rural landscape studies. International Archives of the Photogrammetry, Remote Sensing, 33(B3), 44–50.
- Stamatopoulos C. 2011. Orientation and calibration of long focal length cameras in digital close-range photogrammetry. Ph.D. thesis. The University of Melbourne.
- Sumner R. 2014. Processing raw images in matlab. Department of Electrical Engineering, University of California Santa Cruz, 2.
- Tinkham W.T., Swayze N.C. 2021. Influence of Agisoft Metashape parameters on UAS structure from motion individual tree detection from canopy height models. Forests, 22, 12(2), 250.
- Welch R., Dikkers K. 1978. Educational and research aspects of non-metric, close range analogue photogrammetry. Photogrammetric Record, 1, 9(52), 537–547.
- Workman S., Greenwell C., Zhai M., Baltenberger R., Jacobs N. 2015. Deepfocal: A method for direct focal length estimation. IEEE International Conference on Image Processing (ICIP), 1369–1373.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-86162235-5e5e-4e36-ad32-a249fa0d5ec3