PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Superplastic deformation of Mg–9Li–2Al–0.5Sc alloy after grain refinement by KoBo extrusion and cyclic forging

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The quaternary Mg–9Li–2Al–0.5Sc alloy (in wt%) was prepared from pure components. After homogenization, the alloy was subjected to severe plastic deformation by KoBo extrusion and cyclic forging leading to grain refinement in the range of 0.5–2 µm of hexagonal close-packed (HCP) α phase. Deformed alloys showed high ultimate tensile strength near 200 MPa and good elongation in the range 30–40% at room temperature (RT). Large elongations close to 200% were obtained during the tensile test at a temperature of 200 °C. Deformed samples showed the presence of multiple voids confirming grain boundary sliding mechanism of deformation. Twins on {101-2} planes were identified using electron backscatter diffraction analysis, being in a good agreement with the earlier observation of Mg–Li and Mg–Sc alloys. Intermetallic phases such as cubic MgSc were identified in deformed alloys mostly within HCP α phase, whereas HCP MgSc2 particles were observed within body-centered cubic (BCC) β phase. Intermetallic phases were responsible for RT strengthening of alloys and slightly lower tensile elongation during superplastic deformation. Formation of the HCP α phase was observed within the BCC β phase in tensile deformed alloys. Atomic-level nucleation of HCP phase within the β phase was identified by the use of high-resolution transmission electron microscopy technique.
Rocznik
Strony
343--353
Opis fizyczny
Bibliogr. 37 poz., rys., wykr.
Twórcy
  • Institute of Metallurgy and Materials Science of the Polish Academy of Sciences, 25, Reymonta St., 30‑059 Kraków, Poland
  • Institute of Metallurgy and Materials Science of the Polish Academy of Sciences, 25, Reymonta St., 30‑059 Kraków, Poland
  • Institute of Metallurgy and Materials Science of the Polish Academy of Sciences, 25, Reymonta St., 30‑059 Kraków, Poland
autor
  • Institute of Metallurgy and Materials Science of the Polish Academy of Sciences, 25, Reymonta St., 30‑059 Kraków, Poland
Bibliografia
  • [1] Wu RZ, Deng YS, Zhang ML. Microstructure and mechanical properties of Mg–5Li–3Al–2Zn–xRE alloys. J Mater Sci. 2009;44:4132–9.
  • [2] Furui M, Xu C, Aida T, Inoue M, Anada H, Langdon TG. Improving the superplastic properties of a two-phase Mg–8% Li alloy through processing by ECAP. Mater Sci Eng A. 2005;410–411:439–42.
  • [3] Furui M, Kitamura H, Anada H, Langdon TG. Influence of preliminary extrusion conditions on the superplastic properties of a magnesium alloy processed by ECAP. Acta Mater. 2007;55:1083–91.
  • [4] Qu Z, Liu X, Wu R, Zhang M. The superplastic property of the as-extruded Mg–8Li alloy Mater. Sci Eng A. 2010;527:3284–7.
  • [5] Cao FR, Ding H, Li YL, Zhou G, Cui JZ. Superplasticity, dynamic grain growth and deformation mechanism in ultra-light two-phase magnesium–lithium alloys. Mater Sci Eng A. 2010;527:2335–411.
  • [6] Dong H, Xu S, Wang L, Kamado S, Wang L. Microstructures and mechanical properties of As–Cast and hot-rolled Mg–8.43Li–0.353Ymm (Y-riched mischmetch) alloy. Metall Mater Trans A. 2012;43:709–15.
  • [7] Yang HP, Fu MW, To S, Wang GC. Investigation on the maximum strain rate sensitivity (m) superplastic deformation of Mg-Li based alloy. Mater Design. 2016;112:151–9.
  • [8] Yoshida Y, Cisar L, Kamado S, Kojima Y. Low temperature superplasticity of ECAE processed Mg–10%Li–1%Zn Alloy. Mater Trans. 2002;43:2419–23.
  • [9] Dong S, Imai T, Lim SW, Kanetake N, Saito N, Shigematsu I. Superplasticity in Mg–Li–Zn alloys processed by high ratio extrusion. Mater Manuf Process. 2008;23:336–41.
  • [10] Liu X, Wu R, Niu Z, Zhang J, Zhang M. Superplasticity at elevated temperature of an Mg–8%Li–2%Zn alloy. J Alloys Compd. 2012;541:372–5.
  • [11] Chang TC, Wang JY, Chu CL, Lee S. Mechanical properties and microstructures of various Mg–Li alloys. Mater Lett. 2006;60:3272–6.
  • [12] Kim WJ, Kim MJ, Wang JY. Ultrafine-grained Mg–9Li–1Zn alloy sheets exhibiting low temperature superplasticity. Mater Sci Eng A. 2009;516:17–22.
  • [13] Fu X, Yang Y, Hu J, Su J, Zhang X, Peng X. Microstructure and mechanical properties of as-cast and extruded Mg-8Li-1Al-0.5Sn alloy. Mater Sci Eng A. 2018;709:247–53.
  • [14] Cao F, Xue G, Xu G. Superplasticity of a dual-phase-dominated Mg–Li–Al–Zn–Sr alloy processed by multidirectional forging and rolling. Mater Sci Eng A. 2017;704:360–74.
  • [15] Chen Z, Li Z, Yu C. Hot deformation behavior of an extruded Mg–Li–Zn–RE alloy. Mater Sci Eng A. 2011;528:961–6.
  • [16] Zhao J, Zhang J, Liu W, Wu G, Zhang L. Effect of Y content on microstructure and mechanical properties of as-cast Mg–8Li–3Al–2Zn alloy with duplex structure. Mater Sci Eng A. 2016;650:240–7.
  • [17] Zhang J, Zhang Y, Wu G, Liu W, Zhang L, Ding W. Microstructure and mechanical properties of as-cast and extruded Mg–8Li–3Al–2Zn–0.5Nd alloy. Mater Sci Eng A. 2015;621:198–203.
  • [18] Liu T, Wu SD, Li SX, Li PJ. Microstructure evolution of Mg–14% Li–1% Al alloy during the process of equal channel angular pressing. Mater Sci Eng A. 2007;460–461:499–503.
  • [19] Dutkiewicz J, Bobrowski P, Rusz S, Hilser O, Tański TA, Borek W, Łagoda M, Ostachowski P, Pałka P, Boczkal G, Kuc D, Mikuszewski T. Effect of various SPD techniques on structure and superplastic deformation of two phase MgLiAl alloy. Met Mater Int. 2018;24:1077–89.
  • [20] Matsunoshita H, Edalati K, Furui M, Horita Z. Ultrafine-grained magnesium–lithium alloy processed by high-pressure torsion: Low-temperature superplasticity and potential for hydroforming. Mater Sci Eng A. 2015;640:443–8.
  • [21] Srinivasarao B, Zhilyaev AP, Gutiérrez-Urrutia I, Pérez-Prado MT. Stabilization of metastable phases in Mg–Li alloys by highpressure torsion. Scripta Mater. 2013;68:583–6.
  • [22] Dutkiewicz J, Kalita D, Maziarz W, Tański T, Borek W, Ostachowski P, Faryna M. Effect of KOBO extrusion and following cyclic forging on grain refinement of Mg–9Li–2Al–05Sc alloy. Met Mater Int. 2020;26:1004–14.
  • [23] Dutkiewicz J, Rogal Ł, Kalita D, Fima P. Development of new age hardenable Mg-Li-Sc alloys. J Alloys Compd. 2019;754:686–96.
  • [24] Sha G, Sun X, Liu T, Zhu Y, Yu T. Effects of Sc addition and annealing treatment on the microstructure and mechanical properties of the As-rolled Mg-3Li alloy. J Mater Sci Technol. 2011;27(8):753–8.
  • [25] Wu H, Gao Z, Lin J, Chiu C. Effects of minor scandium addition on the properties of Mg–Li–Al–Zn alloy. J Alloys Compd. 2009;474:158–63.
  • [26] Wu R, Yan Y, Wang G, Murr LE, Han W, Zhang Z, Zhang M. Recent progress in magnesium–lithium alloys. Int Mater Rev. 2015;60:65–100.
  • [27] Korbel A, Bochniak W, Ostachowski P, Błaż L. Visco-plastic flow of metal in dynamic conditions of complex strain scheme. Metall Mater Trans A. 2011;42:2881–977.
  • [28] Korbel A, Bochniak W. Stratified plastic flow in metals. Int J Mech Sci. 2017;128–129:269–76.
  • [29] Zou Y, Zhang L, Wang H, Tong X, Zhang M, Zhang Z. Texture evolution and their effects on the mechanical properties of duplex Mg–Li alloy. J Alloys Compd. 2016;669:72–8.
  • [30] Karami M, Mahmudi R. The microstructural, textural, and mechanical properties of extruded and equal channel angularly pressed Mg–Li–Zn alloys. Metall Mater Trans A. 2013;44:3934–46.
  • [31] Park GH, Kim JT, Park HJ, Kim YS, Jeong HJ, Lee N, Seo Y, Suh JY, Son HT, Wang WM, Park JM, Kim KB. Development of lightweight MgLiAl alloys with high specific strength. J Alloys Compd. 2016;680:116–20.
  • [32] Zeng Y, Jiang B, Yang QR, Quan GF, He JJ, Jiang ZT, Pan FS. Effect of Li content on microstructure, texture and mechanical behaviors of the as-extruded Mg-Li sheets. Mater Sci Eng A. 2017;700:59–655.
  • [33] Kumar V, Govind R, Shekhar R, Balasubramaniam K, Balani K. Microstructure evolution and texture development in thermomechanically processed Mg–Li–Al based alloys. Mater Sci Eng A. 2012;547:38–50.
  • [34] Kula A, Silva CJ, Niewczas M. Grain size effect on deformation behaviour of Mg–Sc alloys. J Alloys Compd. 2017;727:642–57.
  • [35] Kumar MA, Beyerlein IJ, Lebensohn RA, Tome CN. Role of alloying elements on twin growth and twin transmission in magnesium alloys Mater. Sci Eng A. 2017;706:295–303.
  • [36] Kim WJ, Han KH, Lee YJ, Kim H, Lee EK. First-principles studies on twinnability of magnesium alloys: effects of yttrium and lithium on (1011)[1012] compression twinning deformation. Met Mater Int. 2018;24:720–9.
  • [37] Chiang CT, Lee S, Chu CL. Rolling route for refining grains of super light Mg–Li alloys containing Sc and Be. T Nonferr Met Soc. 2010;20:1374–9.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-86145a84-821f-4cc1-8279-a47a96c27eb1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.