PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Development of Technologies for Mining Ores with Instable Hanging Wall Rocks

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Rozwój technologii wydobywania rudy z niestabilnymi wiszącymi skałami
Języki publikacji
EN
Abstrakty
EN
Underground mines of Kryvyi Rih iron ore deposit apply room mining systems or systems with bulk caving of ore and overlying rocks in a ratio of 35% to 65%. Most mines prefer room mining systems with pillar caving due to high, technical and economic indicators. However, when mining certain areas, the problem arises of hanging wall rocks stability. Under the same mining and geological conditions of the deposit, stopes are stable in some areas, but in others waste rocks get in the stope from the side of the hanging wall when a slight exposure is created. Thus, in conditions of instable rocks of the hanging wall, development and improvement of the technology involving room mining is an urgent issue. Analysis of researchers reveals factors that significantly indluence stability of the hanging wall rocks and ore. The developed methods enable determining stability parameters and applying an improved option of room mining system in conditions of the instable hanging wall with the help of a protective ore pillar located at the instable hanging wall. Calculations performed demonstrate that application of the proposed mining system enables an increase in the iron content in the mined ore mass by 0.94%, the increased amount of the ore mass extracted and a profit of 18.73 thousand euros for the whole of a block.
PL
Kopalnie podziemne złoża rudy żelaza w Krzywym Rogu stosują systemy urabiania komorowego lub systemy z zawałem rudy i nadległych skał w stosunku 35% do 65%. Większość kopalń preferuje systemy eksploracji komorowej z zawałem filarowym ze względu na wysokie wskaźniki techniczne i ekonomiczne. Jednak podczas eksploatacji niektórych obszarów pojawia się problem ze stabilnością wiszących skał. W takich samych warunkach górniczo-geologicznych złoża stopnie na niektórych obszarach są stabilne, ale na innych skały płonne dostają się do stopu od strony wiszącej ściany, gdy powstaje niewielkie odsłonięcie. Dlatego też w warunkach niestabilnych skał wiszącej ściany pilnym zagadnieniem jest rozwój i doskonalenie technologii eksploatacji komorowej. Analiza badań ujawnia czynniki, które znacząco wpływają na stabilność wiszących skał i rudy. Opracowane metody umożliwiają wyznaczenie parametrów statecznościowych oraz zastosowanie udoskonalonego wariantu systemu eksploracji pomieszczenia w warunkach niestabilnej ściany wiszącej za pomocą filaru ochronnego rudy, znajdującego się przy niestabilnej ścianie wiszącej. Z przeprowadzonych obliczeń wynika, że zastosowanie proponowanego systemu urabiania umożliwia zwiększenie zawartości żelaza w wydobywanej masie rudy o 0,94%, zwiększenie ilości wydobywanej masy rudy oraz zysk w wysokości 18,73 tys. euro za cały blok.
Rocznik
Tom
Strony
103--112
Opis fizyczny
Bibliogr. 41 poz., rys., tab.
Twórcy
  • Kryvyi Rih National University, Faculty of Mining and Metallurgy, 11 Vitalii Matusevych Str., Kryvyi Rih, 50027, Ukraine
  • National University of Water and Environmental Engineering, 11 Soborna Str., Rivne, 33028, Ukraine
  • Central Ukrainian National Technical University, 8, Prospekt Universytetskyi, Kropyvnytskyi, 25006, Ukraine
  • Higher Institute of Mining and Geology of Boké, BP:84, Republic of Guinea
  • Kryvyi Rih National University, Faculty of Mining and Metallurgy, 11 Vitalii Matusevych Str., Kryvyi Rih, 50027, Ukraine
  • National University of Water and Environmental Engineering, 11 Soborna Str., Rivne, 33028, Ukraine
Bibliografia
  • 1. Pysmennyi, S., Chukharev, S., Kyelgyenbai, K., Mutambo, V., & Matsui, A. (2022). Iron ore underground mining under the internal overburden dump at the PJSC “Northern GZK”. IOP Conference Series: Earth and Environmental Science, 1049(1), 012008. https://doi.org/10.1088/1755-1315/1049/1/012008.
  • 2. Stupnik, M., Kalinichenko, V., Fedko, M., Pysmennyi, S., Kalinichenko, O., & Pochtarev, A. (2022). Methodology enhancement for determining parameters of room systems when mining uranium ore in the SE “SkhidGZK” underground mines, Ukraine. Mining of Mineral Deposits, 16(2). 33–41. https://doi.org/10.33271/mining16.02.033.
  • 3. Fedko, M.B., Muzyka, I.O., Pysmennyi, S.V. & Kalinichenko, O.V. (2019). Determination of drilling and blasting parameters considering the stress-strain state of rock ores. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 1, 37–41. https://doi.org/10.29202/nvngu/2019-1/20.
  • 4. Morkun, V., Morkun, N., & Tron, V. (2015). Distributed control of ore beneficiation interrelated processes under parametric uncertainty. Metallurgical and Mining Industry, 8(7), 18–21.
  • 5. Golik, V., Komashchenko, V., Morkun, V., & Irina, G. (2015). Improving the effectiveness of explosive breaking on the bade of new methods of borehole charges initiation in quarries. Metallurgical and Mining Industry, 7(7), 383–387.
  • 6. Bazaluk, O., Rysbekov, K., Nurpeisova, M., Lozynskyi, V., Kyrgizbayeva, G., & Turumbetov, T. (2022). Integrated monitoring for the rock mass state during large-scale subsoil development. Frontiers in Environmental Science, 10, 852591. https://doi.org/10.3389/fenvs.2022.852591.
  • 7. Lozynskyi, V., Medianyk, V., Saik, P., Rysbekov, K., & Demydov, M. (2020). Multivariance solutions for designing new levels of coal mines. Rudarsko Geolosko Naftni Zbornik, 35(2), 23-32. https://doi.org/10.17794/rgn.2020.2.3.
  • 8. Pysmennyi, S., Fedko, M., Chukharev, S., Rysbekov, K., Kyelgyenbai, K., & Anastasov, D. (2022). Technology for mining of complex-structured bodies of stable and unstable ores. IOP Conference Series: Earth and Environmental Science, 970(1), 012040. https://doi.org/10.1088/1755-1315/970/1/012040.
  • 9. Morkun, V., & Morkun, N. (2018). Estimation of the crushed ore particles density in the pulp flow based on the dynamic effects of high-energy ultrasound. Archives of Acoustics, 43(1), 61–67.
  • 10. Golik, V., Komashchenko, V., Morkun, V., & Zaalishvili, V. (2015). Enhancement of lost ore production efficiency by usage of canopies. Metallurgical and Mining Industry, 7(4), 325–329.
  • 11. Morkun, V., Morkun, N., & Tron, V. (2015). Distributed closed-loop control formation for technological line of iron ore raw materials beneficiation. Metallurgical and Mining Industry, 7(7), 16–19.
  • 12. Pysmennyi, S., Peremetchyk, A., Chukharev, S., Fedorenko, S., Anastasov, D., & Tomiczek, K. (2022). The mining and geometrical methodology for estimating of mineral deposits. IOP Conference Series: Earth and Environmental Science, 1049(1), 012029. https://doi.org/10.1088/1755-1315/1049/1/012029.
  • 13. Kyelgyenbai K., Pysmennyi S., Chukharev S., Purev B., & Jambaa I. (2021). Modelling for degreasing the mining equipment downtime by optimizing blasting period at Erdenet surface mine. E3S Web of Conferences, (280), 08001. https://doi.org/10.1051/e3sconf/202128008001.
  • 14. Stupnik, M., Kalinichenko, V., Fedko, M., Pysmennyi, S., Kalinichenko, O., & Pochtarev, A. (2022). Methodology enhancement for determining parameters of room systems when mining uranium ore in the SE “SkhidGZK” underground mines, Ukraine. Mining of Mineral Deposits, 16(2). 33–41. https://doi.org/10.33271/mining16.02.033.
  • 15. Bazaluk, O., Petlovanyi, M., Zubko, S., Lozynskyi, V., & Sai, K. (2021). Instability Assessment of Hanging Wall Rocks during Underground Mining of Iron Ores. Minerals, 11(8), 858. https://doi.org10.3390/min11080858.
  • 16. Petlovanyi, M., Lozynskyi, V., Zubko, S., Saik, P., & Sai, K. (2019). The infuence of geology and ore deposit occurrence conditions on dilution indicators of extracted reserves. Rudarsko Geolosko Naftni Zbornik, 34(1), 83-91. https://doi.org/10.17794/rgn.2019.1.8.
  • 17. Bazaluk, O., Petlovanyi, M., Lozynskyi, V., Zubko, S., Sai, K., & Saik, P. (2021). Sustainable Underground Iron Ore Mining in Ukraine with Backfilling Worked-Out Area. Sustainability, 13(2), 834. https://doi.org/10.3390/ su13020834.
  • 18. Sobczyk, W., Perny, K.C.I., Sobczyk, E.J. (2021). Assessing the Real Risk of Mining Industry Environmental Impact. Case Study. Inzynieria Mineralnathis, 1 (1), 33–41. https://doi.org/10.29227/IM-2021-01-05.
  • 19. Malakhov, G.M. (1990). Upravleniye gornym davleniyem pri razrabotke rudnykh mestorozhdeniy Krivorozhskogo basseyna [Management of rock pressure in the development of ore deposits of the Krivoy Rog basin]. (Kyiv: Naukova dumka).
  • 20. Issayeva, L., Togizov, K., Duczmal-Czernikiewicz, A., Kurmangazhina, M., & Muratkhanov, D. (2022). Ore-controlling factors as the basis for singling out the prospective areas within the Syrymbet rare-metal deposit, Northern Kazakhstan. Mining of Mineral Deposits, 16(2), 14-21. https://doi.org/10.33271/mining16.02.014.
  • 21. Zeylik, B., Arshamov, Y., Baratov, R., & Bekbotayeva, A. (2021). New technology for mineral deposits prediction to identify prospective areas in the Zhezkazgan ore region. Mining of Mineral Deposits, 15(2), 134-142. https://doi. org/10.33271/mining15.02.134.
  • 22. Lyashenko, V., Andreev, B., & Dudar, T. (2022). Substantiation of mining-technical and environmental safety of underground mining of complex-structure ore deposits. Mining of Mineral Deposits, 16(1), 43-51. https://doi. org/10.33271/mining16.01.043.
  • 23. Takhanov, D., Muratuly, B., Rashid, Z., & Kydrashov, A. (2021). Geomechanics substantiation of pillars development parameters in case of combined mining the contiguous steep ore bodies. Mining of Mineral Deposits, 15(1), 50-58. https://doi.org/10.33271/mining15.01.050.
  • 24. Panchenko, V., Sobko, B., Lotous, V., Vinivitin, D., & Shabatura, V. (2021). Openwork scheduling for steep-grade iron-ore deposits with the help of near-vertical layers. Mining of Mineral Deposits, 15(1), 87-95. https://doi. org/10.33271/mining15.01.087.
  • 25. Rysbekov, K., Bitimbayev, M., Akhmetkanov, D., Yelemessov, K., Barmenshinova, M., Toktarov, A., & Baskanbayeva, D. (2022). Substantiation of mining systems for steeply dipping low-thickness ore bodies with controlled continuous stope extraction. Mining of Mineral Deposits, 16(2), 64-72. https://doi.org/10.33271/mining16.02.064.
  • 26. Radwanek-Bąk, B., Sobczyk, W. & Sobczyk, E.J. (2020). Support for multiple criteria decisions for mineral deposits valorization and protection. Resources Policy, 68. 101795. https://doi.org/10.1016/j.resourpol.2020.101795.
  • 27. Byzov, V.F., & Korzh, V.A. (2003). Osnovy tekhnolohiyi hirnychoho vyrobnytstva [Basics of mining technology]. (Kryvyy Rih: Mineral).
  • 28. Kalinichenko, V., Dolgikh, O., Dolgikh, L., & Pysmennyi, S. (2020). Choosing a camera for mine surveying of mining enterprise facilities using unmanned aerial vehicles. Mining of Mineral Deposits, 14(4), 31-39. https://doi. org/10.33271/mining14.04.031.
  • 29. Turchaninov, I.A., Iofis, M.A., & Kaspar'yan, Z.Z. (1989). Osnovy mekhaniki gornykh porod [Fundamentals of rock mechanics]. (Leningrad: Nedra).
  • 30. Rymarchuk, B. I. (2007). Rozrobka resursozberihayuchoyi tekhnolohiyi pidzemnoyi vidbiyky zaliznykh rud [Development of resource-saving technology for underground iron ore]. (Kryvyy Rih: KTU).
  • 31. Pysmennyi, S., Chukharev, S., Khavalbolot, K., Bondar, I., & Ijilmaa, J. (2021). Enhancement of the technology of mining steep ore bodies applying the “floating” crown. E3S Web of Conferences, 280, 08013. https://doi. org/10.1051/e3sconf/202128008013.
  • 32. Sobczyk, W. (2015). Sustainable development of Middle East region. Problemy Ekorozwoju – problems of sustainable Development, 10 (2), 51–62.
  • 33. Stupnik, N., Kalinichenko, V., Pismennij, S. & Kalinichenko, Е. (2015). Features of underlying levels opening at “ArsellorMittal Kryvyic Rih” underground mine. New Developments in Mining Engineering 2015: Theoretical and Practical Solutions of Mineral Resources Mining, 39–44.
  • 34. Khomenko, O., Kononenko, M., & Danylchenko, М. (2016). Modeling of bearing massif condition during chamber mining of ore deposits. Mining Of Mineral Deposits, 10(2), 40-47. https://doi.org/10.15407/mining10.02.040.
  • 35. Myronova, I. (2016). Prediction of contamination level of the atmosphere at influence zone of iron-ore mine. Mining of Mineral Deposits, 10(2), 64–71. https://doi.org/10.15407/mining10.02.064.
  • 36. Kononenko, M., Khomenko, O., Kovalenko, I., & Savchenko, M. (2021). Control of density and velocity of emulsion explosives detonation for ore breaking. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 2, 69-75. https:// doi.org/10.33271/nvngu/2021-2/069.
  • 37. Tsarikovskiy, V.V. (1987). Opredeleniye i kontrol' dopustimykh razmerov konstruktivnykh elementov sistem razrabotki na rudnikakh Krivbassa [Determination and control of the allowable dimensions of structural elements of development systems at the mines of Krivbass]. (Krivoy Rog: NIGRI).
  • 38. Khomenko, O., & Kononenko, M. (2019). Geo-energetics of Ukrainian crystalline shield. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 3, 12-21. https://doi.org/10.29202/nvngu/2019-3/3.
  • 39. Mironova, I., Borysovs’ka, O. (2014). Defining the parameters of the atmospheric air for iron ore mines. Progressive Technologies of Coal, Coalbed Methane, and Ores Mining, 333-340. https://doi.org/10.1201/b17547-57.
  • 40. Galayev, N.Z. (1990). Upravleniye sostoyaniyem massiva gornykh porod pri podzemnoy razrabotke rudnykh mestorozhdeniy [Management of the state of the rock mass in the underground mining of ore deposits] (Moscow: Nedra).
  • 41. Zorin, A.N., Kolesnikov, V.G., & Minayev, S.P. (1986). Upravleniye sostoyaniyem gornogo massiva. [Managing the state of the mountain range] (Kyiv: Naukova dumka).
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu „Społeczna odpowiedzialność nauki” - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8606c75d-e79f-4f14-903f-cdb3a568369f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.