PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Efficiency of wastewater purification in medium sand with a lightweight expanded clay aggregate assisting layer

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The objective of this experimental study was to examine whether an assisting layer of lightweight expanded clay aggregate (LECA) of the granulation 1-4 mm, introduced into a subsoil, is able to improve an efficiency of removal of total nitrogen and total phosphorus from domestic wastewater. In the investigations, an assisting 0.10 and 0.20 m thick LECA layer was applied. It has been observed that the effectiveness of removal of total suspended solids (TSS), total nitrogen and total phosphorus from wastewater as well as the level of biochemical oxygen demand (BOD5) and chemical oxygen demand (COD) is in accordance with the Polish standards on wastewater disposal into grounds and surface water. The performed experiments showed that the effectiveness of raw wastewater purification for the medium sand soil bed with the 0.20 m thick assisting LECA layer is higher than for the 0.10 m thick assisting layer. In the medium sand soil bed with the 0.20 m thick assisting LECA layer, the removal efficiency regarding total nitrogen increased by 20.6%, total phosphorus by 5.2%, ammonium nitrogen by 8.8% and TSS by 5.3%, and reduction efficiency regarding BOD5 increased by 1.7% and COD by 2.3% with relation to the 0.10 m thick assisting LECA layer (all percentages - in average). The results of the experiment showed that the LECA with the granulation 1-4 mm can be used to assist in removal of total nitrogen and total phosphorus from wastewater with application of infiltration drainage.
Wydawca
Rocznik
Tom
Strony
30--38
Opis fizyczny
Bibliogr. 39 poz., fot., rys., tab.
Twórcy
  • Warsaw University of Life Sciences – SGGW, Institute of Environmental Engineering, Department of Hydraulics and Sanitary Engineering, Nowoursynowska 159, 02-776 Warsaw, Poland
  • Warsaw University of Life Sciences – SGGW, Institute of Environmental Engineering, Department of Hydraulics and Sanitary Engineering, Nowoursynowska 159, 02-776 Warsaw, Poland
  • Warsaw University of Life Sciences – SGGW, Institute of Civil Engineering, Department of Mechanics and Building Structures, Warsaw, Poland
autor
  • Warsaw University of Life Sciences – SGGW, Institute of Environmental Engineering, Department of Hydraulics and Sanitary Engineering, Nowoursynowska 159, 02-776 Warsaw, Poland
Bibliografia
  • Ádám, K. et al. (2007) “Phosphorus retention in the filter materials shellsand and Filtralite P® – Batch and column experiment with synthetic P solution and secondary wastewater,” Ecological Engineering, 29(2), pp. 200–208. Available at: https://doi.org/10.1016/j.ecoleng.2006.09.021.
  • Albuquerque, C.M. and Labrincha, J.A. (2008) “Removal of contaminants from aqueous solutions by beds made of rejects of the lightweight aggregates production,” Ceramics International, 34(7), pp. 1735–1740. Available at: https://doi.org/10.1016/j.ceramint.2007.05.014.
  • Amado, L., Albuquerque, A. and Espírito Santo, A. (2012) “Influence of stormwater infiltration on the treatment capacity of a LECA-based horizontal subsurface flow constructed wetland,” Ecological Engineering, 39, pp. 16–23. Available at: https://doi.org/10.1016/j.ecoleng.2011.11.009.
  • Beal, C.D., Gardner, E.A. and Menzies, N.W. (2005) “Process, performance, and pollution potential: A review of septic tank –soil absorption systems,” Soil Research, 43(7), pp. 781–802. Available at: https://doi.org/10.1071/sr05018.
  • CEN/TR 12566-2:2005. Small wastewater treatment systems for up to 50 PT – Part 2: Soil infiltration system. Brussels, Belgium: European Committee for Standardization pp. 49.
  • Chmielowski, K. and Ślizowski, R. (2008) “Defining the optimal range of a filter bed’s d10 replacement diameter in vertical flow sand filters [online],” Environment Protection Engineering, 34(3), pp. 35–42. Available at: https://epe.pwr.edu.pl/2008/Chmielowski_3-2008.pdf (Accessed: May 2, 2022).
  • Cuyk van, S. et al. (2001) “Hydraulic and purification behaviors and their interactions during wastewater treatment in soil infiltration systems,” Water Research, 35(4), pp. 953–964. Available at: https://doi.org/10.1016/s0043-1354(00)00349-3.
  • Eveborn, D., Kong, D. and Gustafsson, J.P. (2012) “Wastewater treatment by soil infiltration: Long-term phosphorus removal,” Journal of Contaminant Hydrology, 140–141, pp. 24–33. Available at: https://doi.org/10.1016/j.jconhyd.2012.08.003.
  • Gill, L.W. et al. (2009) “Nutrient loading on subsoils from on-site wastewater effluent, comparing septic tank and secondary treatment systems,” Water Research, 43(10), pp. 2739–2749. Available at: https://doi.org/10.1016/j.watres.2009.03.024.
  • Hawkins, C.L. et al. (2008) “Earthworm populations in septic system filter fields and potential effects on wastewater renovation,” Applied Soil Ecology, 40(1), pp. 195–200. Available at: https://doi.org/10.1016/j.apsoil.2008.03.001.
  • Heatwole, K.K. and McCray, J.E. (2007) “Modeling potential vadose-zone transport of nitrogen from onsite wastewater systems at the development scale,” Journal of Contaminant Hydrology, 91(1–2), pp. 184–201. Available at: https://doi.org/10.1016/j.jconhyd.2006.08.012.
  • Huang, Y.-Y. et al. (2020) “The application of non-Crassulacean acid metabolism edible plant and lightweight expanded clay aggregate to achieve joint benefits of thermal insulation mitigation and passive cooling strengthening of extensive green roofs in subtropical regions,” Solar Energy, 201, pp. 944–964. Available at: https://doi.org/10.1016/j.solener.2020.03.029.
  • Kalenik, M. (2014) “Skuteczność oczyszczania ścieków w gruncie piaszczystym z warstwą naturalnego klinoptylolitu [Sewage treatment efficacy of sandy soil bed with natural clinoptiolite assist layer],” Ochrona Środowiska, 36(3), pp. 43–48.
  • Kalenik, M. and Cieśluk, M. (2009) “Sewage treatment in gravel with assisting dolomite layer,” in W. Sądej (ed.) Sewages and waste materials in environment. University of Warmia and Mazury in Olsztyn. Faculty of Environmental Management and Agriculture, pp. 23–33.
  • Kalenik, M. and Chalecki, M. (2019) “Investigations on the effectiveness of wastewater purification in medium sand with assisting clinoptilolite layer,” Environment Protection Engineering, 45(2). Available at: https://doi.org/10.37190/epe190208.
  • Kalenik, M. and Chalecki, M. (2021) “Investigations on the effectiveness of wastewater purification in medium sand with assisting opoka rock layer,” Environment Protection Engineering, 47(1). Available at: https://doi.org/10.37190/epe210105.
  • Kalenik, M. and Wancerz, M. (2013) “Badania oczyszczania ścieków w piasku średnim z warstwą wspomagającą z chalcedonitu – skala laboratoryjna [Research of sewage treatment in mean sand with assisting layer with chalcedonic – laboratory scale],” Infrastruktura i Ekologia Terenów Wiejskich, 3(I), pp. 163–173.
  • Kalhori, E.M. et al. (2013) “Modeling of adsorption of toxic chromium on natural and surface modified lightweight expanded clay aggregate (LECA),” Applied Surface Science, 287, pp. 428–442. Available at: https://doi.org/10.1016/j.apsusc.2013.09.175.
  • Kvarnström, M.E., Morel, C.A.L. and Krogstad, T. (2004) “Plant-availability of phosphorus in filter substrates derived from small-scale wastewater treatment systems,” Ecological Engineering, 22(1), pp. 1–15. Available at: https://doi.org/10.1016/j.ecoleng.2003.12.005.
  • Łopata, M. et al. (2017) “The use of expanded clay aggregate for the pretreatment of surface waters on the example of a tributary of Lake Klasztorne Górne in Strzelce Krajeńskie,” Limnological Review, 17(1), pp. 3–9. Available at: https://doi.org/10.1515/limre-2017-0001.
  • Mycielska-Dowgiałło, E. and Woronko, B. (1998) “Analiza obtoczenia i zmatowienia powierzchni ziarn kwarcowych frakcji piaszczystej i jej wartość interpretacyjna [Rounding and frosting analysis of quartz grains of sand fraction, and its interpretative value],” Przegląd Geologiczny, 46(12), pp. 1275–1281.
  • Nieć, J. and Spychała, M. (2014) “Hydraulic conductivity estimation test impact on long-term acceptance rate and soil absorption system design,” Water, 6(9), pp. 2808–2820. Available at: https://doi.org/10.3390/w6092808.
  • Pla, C. et al. (2021) “Effectiveness of two lightweight aggregates for the removal of heavy metals from contaminated urban stormwater,” Journal of Contaminant Hydrology, 239, 103778. Available at: https://doi.org/10.1016/j.jconhyd.2021.103778.
  • PN-C-04616/10:1987. Woda i ścieki. Badania specjalne osadów. Hodowla standardowego osadu czynnego w warunkach laboratoryjnych [Water and waste water, Special test for sediments. The cultivation of standardized activated sludge in laboratory conditions]. Warszawa: Polski Komitet Normalizacyjny.
  • Rozporządzenie (2019) “Rozporządzenie Ministra Gospodarki Morskiej i Żeglugi Śródlądowej z dnia 12 lipca 2019 r. w sprawie substancji szczególnie szkodliwych dla środowiska wodnego oraz warunków, jakie należy spełnić przy wprowadzaniu do wód lub do ziemi ścieków, a także przy odprowadzaniu wód opadowych lub roztopowych do wód lub do urządzeń wodnych [Regulation of the Minister of Marine Economy and Inland Navigation of 12 July 2019 on substances that are particularly harmful to the aquatic environment and conditions to be fulfilled during wastewater introduction into water or ground as well as during rainwater and snowmelt discharge into water or water equipment].” Dz.U. 2019 poz. 1311 pp. 48.
  • Sharifnia, S. et al. (2016) “Characterization, isotherm and kinetic studies for ammonium ion adsorption by light expanded clay aggregate (LECA),” Journal of Saudi Chemical Society, 20, pp. S342–S351. Available at: https://doi.org/10.1016/j.jscs.2012.12.003.
  • Singh, R. et al. (2018) “Performance of earthworm-enhanced horizontal sub-surface flow filter and constructed wetland,” Water, 10(10), 1309. Available at: https://doi.org/10.3390/w10101309.
  • Shokri, A. (2020) “Using Mn based on lightweight expanded clay aggregate (LECA) as an original catalyst for the removal of NO2 pollutant in aqueous environment,” Surfaces and Interfaces, 21, 100705. Available at: https://doi.org/10.1016/j.surfin.2020.100705.
  • Spychała, M. and Nieć, J. (1997) “Impact of septic tank sludge on filter permeability,” Environment Protection Engineering, 39(2), pp. 77–89.
  • Spychała, M., Nieć, J. and Pawlak, M. (2013) “Preliminary study on filamentous particle distribution in septic tank effluent and their impact on filter cake development,” Environmental Technology, 34(20), pp. 2825–2833. Available at: https://doi.org/10.1080/09593330.2013.790082.
  • Spychała, M. and Pilc, L. (2011) “Can earthworms de-clog sand filters?,” Polish Journal Environmental Studies, 20(4), pp. 1037–1041.
  • Suliman, F. et al. (2005) “The effect of the scale of horizontal subsurface flow constructed wetlands on flow and transport parameters,” Water Science and Technology, 51(9), pp. 259–266. Available at: https://doi.org/10.2166/wst.2005.0332.
  • Śliz, P. and Bugajski, P. (2022) “Assessment of the stability and reliability of the water treatment plant in Nowy Sącz using control cards,” Journal of Water and Land Development, pp. 251–256. Available at: https://doi.org/10.24425/jwld.2022.140396.
  • Tabernacki, J. et al. (1990) “Album wzorcowych rozwiązań odprowadzania i unieszkodliwiania ścieków bytowo-gospodarczych z wiejskich gospodarstw zagrodowych [Album of model solutions of disposal and neutralization of communal sewage from rural homesteads],” Materiały Instruktażowe, 74. Falenty: Wydaw. IMUZ.
  • Wang, M., Zhu, J. and Mao, X. (2021) “Removal of pathogens in onsite wastewater treatment systems: A review of design considerations and influencing factors,” Water, 13(9), 1190. Available at: https://doi.org/10.3390/w13091190.
  • Wąsik, E. and Chmielowski, K. (2017) “Ammonia and indicato bacteria removal from domestic sewage in a vertical flow filter filled with plastic material,” Ecological Engineering, 106, pp. 378–384. Available at: https://doi.org/10.1016/j.ecoleng.2017.05.015.
  • Zendehzaban, M., Sharifnia, S. and Hosseini, S.N. (2013) “Photo-catalytic degradation of ammonia by light expanded clay aggregate (LECA)-coating of TiO2 nanoparticles,” Korean Journal of Chemical Engineering, 30(3), pp. 574–579. Available at: https://doi.org/10.1007/s11814-012-0212-z.
  • Zhu, T. et al. (2003) “Phosphorus sorption characteristics of a lightweight aggregate,” Water Science and Technology, 48(5), pp. 93–100. Available at: https://doi.org/10.2166/wst.2003.0290.
  • Zukri, A. et al. (2018) “Physical and mechanical properties of Lightweight Expanded Clay Aggregate (LECA),” in Y. Haryati, M.Y. Nor Zurairahetty, and I. Izni Syahrizal (eds.) MATEC Web of Conferences, 250, 01016. Available at: https://doi.org/10.1051/matecconf/201825001016.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8604f9c9-a42f-4a12-be07-f242d074550d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.