PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modification of substandard EPDM with amorphous thermoplastic polyesters (PETG and PEF): microstructure and physical properties

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The phase morphology, thermal behavior and mechanical properties of two series of polymer blends based on ethylene/propylene/diene rubber (EPDM) and amorphous homologues of poly(ethylene terephthalate), i.e. glycol modifi ed poly(ethylene terephthalate) (PETG) and poly(ethylene furanoate) (PEF), were investigated. The morphology of the blends shows a two phase structure in which the minor phase (amorphous polyester) is dispersed as domains in the major (EPDM) continuous matrix phase. Differential calorimetry studies confi rmed that both systems were immiscible and exhibits two glass transitions. The melting peak area of EPDM in the blends decreased as the amount of the other component increased. The values of stress at strain of 100% were improved upon the increasing content of PETG in EPDM system, while only slight decrease of this value was observed. Moreover, the strong improvement of hardness and thermo-oxidative stability along with an increasing content of amorphous polyester phase was reported.
Rocznik
Strony
8--14
Opis fizyczny
Bibliogr. 46 poz., rys., tab.
Twórcy
  • West Pomeranian University of Technology, Institute of Material Science and Engineering, Piastow 19, 70-310 Szczecin, Poland
autor
  • West Pomeranian University of Technology, Institute of Material Science and Engineering, Piastow 19, 70-310 Szczecin, Poland
autor
  • West Pomeranian University of Technology, Institute of Material Science and Engineering, Piastow 19, 70-310 Szczecin, Poland
Bibliografia
  • 1. Zhang, H., Datta, R.N., Talma, A.G. & Noordermeer, J.W.M. (2010). Modifi cation of EPDM with alkyphenol polysulfi de for use in tire sidewalls, 1-mechanical properties. Macromol. Mater. Eng. 295, 67–75. DOI:10.1002/mame.200900126.
  • 2. Stelescu, M.D., Airinei, A., Grigoras, C. & Niculescu--Aron I.G. (2010). Use of Differential Scanning Calorimetry (DSC) in the Characterization of EPDM/PP blends. Int. J. Thermophys. 31, 2264–2274. DOI: 10.1107/s10765-010-0872-z.
  • 3. Waddell, W.H. (1998). Tire Black Sidewall Surface Discoloration and Non-Staining Technology: A Review. Rubb. Chem. Technol. 71(3), 590–618. DOI: 10.5254/1.3538493.
  • 4. Ivan, G. (1993). Dynamic vulcanization an accesible way to thermoplastic elastomers. Iran. J. Polym. Sci. Technol. 2(1), 3–11.
  • 5. Shonaike, G.O. & Simon, G.P. (1993). Polymer Blends and Alloys. New York, USA: Marcel Dekker Inc.
  • 6. Utracki, L.A. & Favis, B.D. (1989). Handbook of Polymer Science and Technology. In Cheremisinoff, N.P. (Ed.), Polymer alloys and blends (Chapter 4). New York and Basel: Mercel Dekker, Inc.
  • 7. Paul, D.R. & Newman S. (Eds.) (1972). Polymer blends, New York, USA: Academic Press
  • 8. Walker, B.M. (Ed.) (1979). Handbook of Thermoplastic Elastomers, New York, USA: Van Nostrand Reinhold
  • 9. De, S.K. & Bhowmick, A.K. (Eds.) (1990). Thermoplastic Elastomers from Rubber Plastic Blends, New York , USA: Ellis & Horwood
  • 10. Wu, S. (1985). Phase structure and adhesion in polymer blends: A criterion for rubber toughening. Polymer 26(12), 1855–1863. DOI: 10.1016/0032-3861(85)90015-1.
  • 11. Coran, A.Y., Patel, R.P. & Williams, D. (1982). Rubber-Thermoplastic Compositions. Part V. Selecting Polymers for Thermoplastic Vulcanizates, Rubb. Chem. Technol. 54, 116–136.DOI:10.5254/1.3535861.
  • 12. Park, J.G., Kim, D.H. & Suh, K.D. (2000). Blends of Polyethyleneterephthalate with EPDM through Reactive Mixing, J. Appl. Polym. Sci. 78(12), 2227–2233. DOI: 10.1002/1097-4628(20001213)78:12<2227::AID-APP210>3.0.CO;2-0.
  • 13. Turner, S.R. (2004). Development of amorphous copolyesters based on 1,4-cyclohexanedimethanol, J. Polym. Sci. Part A: Polym. Chem. 42(23), 5847–5842. DOI: 10.1002/pola.2046.
  • 14. Tsai, Y., Fan, C.H., Hung, C.Y. & Tsai, F.J. (2011). Transparent Copolyester/Organoclay Nanocomposites Prepared by In Situ Intercalation Polymerization: Synthesis, Characterization, and Properties, Polym. Compos. 32(1), 89–96. DOI: 10.1002/pc.21021.
  • 15. Tsai, Y., Fan, C.H., Hung, C.Y. & Tsai, F.J. (2008). Amorphous copolyesters based on 1,3/1,4-cyclohexanedimethanol: Synthesis, characterization and properties, J. Appl. Polym. Sci. 109(4), 2598–2604. DOI: 10.1002/app.28385.
  • 16. Tsai, Y., Fan, C.H., Hung, C.Y. & Tsai, F.J. (2007). Poly(ethylene terephthalate) copolymers that contain 5-tertbutylisophthalic acid and 1-3/1-4-cyclohexanedimethanol: Synthesis, characterization, and properties, J. Appl. Polym. Sci.104(1), 279–285. DOI: 10.1002/app.25592.
  • 17. Villa, A., Schiavoni, M., Campisi, S., Veith, G.M. & Prati, L. (2013). Pd-modified Au on carbon as an effective and durable catalyst for the direct oxidation of HMF to 2,5-furandicarboxylic acid, Chem. Sus. Chem. 6(4), 609–612. DOI: 10.1002/cssc.201200778.
  • 18. Wang, J., Liu, X., Zhang, Y., Liu, F. & Zhu, J. (2016). Modification of poly(ethylene 2,5-furandicarboxylate) with 1,4- cyclohexanedimethylene: Infl uence of composition on mechanical and barrier properties, Polymer 103, 1–8, DOI: 10.1016/j.polymer.2016.09.030.
  • 19. Pillon, L.Z. & Utracki, L.A. (1984). Compatibilization of polyester/polyamide blends via catalytic ester-amide interchange reaction, Polym. Eng. Sci. 24(17), 1300–1305. DOI: 10.1002/pen.760241706.
  • 20. Pillon, L.Z., Utracki, L.A. & Pillon, D.W. (1987). Spectroscopic study of poly(ethylene terephthalate)/poly(amide-6,6) blends, Polym. Eng. Sci. 27(8), 562–567. DOI: 10.1002/pen.760270806.
  • 21. Subramanian, P.M. (1987). Poly(ethylene terephthalate) blends for permeability barrier applications, Polym. Eng. Sci. 27(21), 1574–1581. DOI: 10.1002/pen.760272103.
  • 22. Hourston, D.J., & Lane, S. (1994). Toughened polyesters and polycarbonates. In: Collyer A.A. (eds) Rubber Toughened Engineering Plastics. Springer, Dordrecht.
  • 23. Hourston, D.J., Koetsier, D.W., Lane, S. & Zhang, H.X. (1990). In 33rd IUPAC International Symposium On Macromolecules, 8–13 July 1990, Montreal, Canada.
  • 24. Droescher, M., Gerth, C. & Bornschlegl, E. (1986). German Patent No. 3,510,409. Germany: German Patent and Trade Mark Office.
  • 25. Aravind, I., Albert, P., Ranganathaiah, C., Kurian, V. & Thomas, S. (2004). Compatibilizing effect of EPM-g-MA in EPDM/poly(trimethylene terephthalate) incompatible blends, Polymer 45(14), 4925–4937. DOI: 10.1016/j.polymer.2004.04.063.
  • 26. Wang, X.H., Zhang, H.Z., Wang, Z.G. & Jiang, B.Z. (1997). Toughening of poly(butylene terephthalate) with epoxidized ethylene propylene diene rubber, Polymer 38(7), 1569–1572. DOI: 10.1016/S0032-3861(96)00674-X.
  • 27. Grigoryeva, O.P. & Karger-Kocsic, J. (2000). Melt grafting of maleic anhydride onto an ethylene–propylene–diene terpolymer (EPDM), Europ. Polym. J. 36(7), 1419–1429. DOI:10.1016/S0014-3057(99)00205-0.
  • 28. Khosrokhavar, R., Naderi, G., Bakhshandeh, G.R. & Ghoreishy, M.H.R. (2011). Effect of processing proerties on PP/EPDM/organoclay nanocomposites using Taguchi analysis method, Iran. Polym. J. 20(1), 41–53.
  • 29. Paszkiewicz, S., Szymczyk, A., Špitalský, Z., Mosnáček, J., Janus, E. & Rosłaniec, Z. (2013), Effect of Addition of Expanded Graphite (EG) on the Synthesis and Characteristics of Poly(ethylene terephthalate) Modifi ed with Cyclohexanedimethanol, Polimery (Warsaw) 58(11–12), 47–53. DOI: 10.14314/polimery.2013.893.
  • 30. Kwiatkowska, M., Kowalczyk, I., Kwiatkowski, K., Szymczyk, A. & Roslaniec Z. (2016). Fully biobased multiblock copolymers of furan-aromatic polyester and dimerized fatty acid: Synthesis and characterization, Polymer 99(2), 503–512. DOI: 10.1016/j.polymer.2016.07.060.
  • 31. Van Krevelen, D.W. & Te Nijenhuis, K. (2009). Properties of Polymers (4th ed.) (pp. 201–222). Amsterdam, Netherlands: Elsevier B.V.
  • 32. Hoy, K.L. (1970). New values of the solubility parameters from vapor pressure data, J. Paint. Technol. 42(541), 76–118.
  • 33. Koenhen, D.M. & Smolders, C.A. (1975). The determination of solubility parameters of solvents and polymers by means of correlations with other physical quantities, J. Appl. Polym. Sci. 19(4), 1163–1179. DOI: 10.1002/app.1975.070190423.
  • 34. Holden, G., Legge, N.R., Quirk, R.P. & Schroeder, H. E. (1996). Thermoplastic Elastomers (2nd ed.). Munich, Germany: Hanser Publishers.
  • 35. Fakirov, S. (2005). Handbook of Condensation Thermoplastic Elastomers. Weinheim, Germany: Wiley-VCH.
  • 36. Callan, J.E., Hess, W.M. & Scott, C.E. (1971). Elastomer Blends. Compatibility and Relative Response to Fillers. Rubb. Chem. Technol. 44(3), 814–837. DOI: 10.5254/1.3544796.
  • 37. Nielsen, L.E. (1974). Morphology and the elastic modulus of block polymers and polyblends. Rheol. Acta 13(1), 86–92. DOI: 10.1007/BF01526889.
  • 38. Danesi, S. & Porter, R.S. (1978). Blends of isotactic polypropylene and ethylene-propylene rubbers: rheology, morphology and mechanics, Polymer 19, 448–457. DOI: 10.1016/0032-3861(78)90255-0.
  • 39. Paul, D.R. & Barlow, J.W. (1980). Polymer Blends, J. Macromol. Sci. Part C Polym. Rev. C18(1), 109–168. DOI: 10.1080/00222358008080917.
  • 40. Elmendrop, J.J. & Maalcke, R.J. (1985). A study on polymer blending microrheology: Part 1, Polym. Eng. Sci. 25(16), 1041–1047. DOI: 10.1002/pen.760251608.
  • 41. Jose, S., Aprem, A.S., Francis, B., Chandy, M.C., Werner, P., Alsteadt, V. & Thomas, S. (2004). Phase morphology, crystallisation behaviour and mechanical properties of isotactic polypropylene/high density polyethylene blends, Europ. Polym. J. 40(9), 2105–2115. DOI: 10.1016/j.eurpolymj.2004.02.026.
  • 42. Plochocki, A.P., Dagli, S.S. & Andrews, R.D. (1990). The interface in binary mixtures of polymers containing a corresponding block copolymer: Effects of industrial mixing processes and of coalescence, Polym. Eng. Sci. 30(12), 741–752. DOI: 10.1002/pen.760301207.
  • 43. Olabisi, O., Robeson, L.M. & Shaw, M.T. (1979). Polymer – Polymer Miscibility, New York, USA: Academic Press
  • 44. Piesowicz, E., Irska, I. & Roslaniec, Z. (2017). EPDM/EVA thermoplastic vulcanizates (TPV) – effect of vinyl acetate content and oil extension on blend properties, Elastomery 21(2), 82–91.
  • 45. Paszkiewicz, S., Szymczyk, A., Pawlikowska, D., Irska, I., Piesowicz, E., Jotko, M., Lisiecki, S., Bartkowiak, A., Sieradzka M., Fryczkowski, R., Kochmanska, A., Kochmanski, P. & Roslaniec, Z. (2017). Improvement of barrier properties of glycol modified poly(ethylene terephthalate) based nanocomposites containing graphene derivatives forms, Polimery (Warsaw) 62(11–12), 908–914. DOI: 10.14314/polimery.2017.908.
  • 46. Burgess, S.K., Leisen, J.E., Kraftschik, B.E., Mubarak, C.R., Kriegel, R.M. & Koros, W.J. (2014). Chain Mobility, Thermal, and Mechanical Properties of Poly(ethylene furanoate) Compared to Poly(ethylene terephthalate), Macromol. 47(4), 1383–1391. DOI: 10.1021/m
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8600b2a1-ada9-44a2-9b18-dfec11f2f68f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.