PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Preparation of NC Microspheres and BuNENA Modified NC Microspheres by the Breath Figures Method

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The ‘breath figures’ method was used to prepare nitrocellulose (NC) microspheres and N-butyl-N-(2-nitroxyethyl)nitramine (BuNENA) modified NC microspheres (BMNM). By using acetone as the solvent and non-solvent n-hexane as the atmosphere, NC microspheres and BMNM were obtained. The matching of solvents and non-solvents was the key factor influencing the final morphology. TG and DSC were employed to study the thermal decomposition characteristics of BMNM. The results suggested that there were two distinct stages of thermal mass loss from the BMNM: the first was the mass loss associated with partial volatilisation of BuNENA, and its activation energy was 68.54 kJ/mol. The second mass loss was the thermal decomposition of NC and residual BuNENA with a high activation energy (249.53 kJ/mol, calculated by the Kissinger method). According to the thermal decomposition kinetics model, the optimal kinetics model of BMNM was B1-A2. The addition of BuNENA did not influence the thermal decomposition of NC.
Rocznik
Strony
567--578
Opis fizyczny
Bibliogr. 25 poz., rys., tab.
Twórcy
autor
  • School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, China
  • School of Chemical Engineering and Environment, North University of China, Taiyuan, China
autor
  • School of Chemical Engineering and Environment, North University of China, Taiyuan, China
autor
  • School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, China
Bibliografia
  • [1] Kumari D., Balakshe R., Banerjee S., Singh H., Energetic Plasticizers for Gun and Rocket Propellant, Rev. J. Chem., 2012, 2(3), 240-262.
  • [2] Damse R.S., Omprakash B., Tope B.G., Chakraborthy T.K., Singh A., Study of N-n-butyl-N-(2-nitroxyethyl)nitramine in RDX Based Gun Propellant, J. Hazard. Mater., 2009, 167(1), 1222-1225.
  • [3] Min B.S., Park Y.C., A Study on the Aliphatic Energetic Plasticizers Containing Nitrate Ester and Nitramine, J. Ind. Eng. Chem., 2009, 15(4), 595-601.
  • [4] Türker L., Atalar T., Computational Studies on Nitratoethylnitramine (NENA) its Tautomers and Charged Forms, J. Hazard. Mater., 2009, 162(1), 193-203.
  • [5] Qi X., Zhang X., Guo X., Zhang W., Chen Z., Zhang J., Experiments and Simulation on Plastication of NENA on NC, J. Solid Rocket Technol. (Guti Huojian Jishu), 2013, 36(4), 516-520.
  • [6] Urenovitch J.V., Low Vulnerability Propellant Plasticizers, Patent US 5482581, 1996.
  • [7] Cartwright R.V., Volatility of NENA and Other Energetic Plasticizers Determined Thermogravimetric Analysis, Propellants Explos. Pyrotech., 1995, 20(2), 51-57.
  • [8] Landsem E., Jensen T.L., Hansen F.K., Unneberg E., Kristensen T.E., Neutral Polymeric Bonding Agents (NPBA) and Their Use in Smokeless Composite Rocket Propellants Based on HMX-GAP-BuNENA, Propellants Explos. Pyrotech., 2012, 37(5), 581-591.
  • [9] Gholamian M.A.F., Zarei A.R., Noncrystalline Binder Based Composite Propellant, ISRN Aerospace Engineering, 2013; doi:10.1155/2013/679710.
  • [10] Fredrich O., Tibbitts G.C., Kerone E.B.W., Manufacture of Smokeless Powders, Patent US 2027114, 1936.
  • [11] Rayleigh L, Breath Figures, Nature, 1911, 86(2169), 416-417.
  • [12] Widawski G., Rawiso M., François B., Self-organized Honeycomb Morphology of Star-polymer Polystyrene Films, Nature, 1994, 369, 387-389.
  • [13] Ferrari E., Fabbri P., Pilati F., Solvent and Substrate Contributions to the Formation of Breath Figure Patterns in Polystyrene Films, Langmuir, 2011, 27(5), 1874-1881.
  • [14] Ucar I.O., Erbil H.Y., Dropwise Condensation Rate of Water Breath Figures on Polymer Surfaces Having Similar Surface Free Energies, Appl. Phys. Lett., 2012, 259, 515-23.
  • [15] Huh M., Jung M.H., Park Y.S., Kang T.B., Nah C., Russell R.A., Holden P.J., Yun S.I., Fabrication of Honeycomb-structured Porous Films from Poly(3- hydroxybutyrate) and Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) via the Breath Figures Method, Polym. Eng. Sci., 2012, 52(4), 920-926.
  • [16] Xiong X., Zou W., Yu Z., Duan J., Liu X., Fan S., Zhou H., Microsphere Pattern Prepared by a “Reverse” Breath Figure Method, Macromolecules, 2009, 42(23), 9351-9356.
  • [17] Huang C.M., Zhang M., Wang D.H., Bai W.B., Xu Y.L., Lin J.H., Fabrication of Polymeric Microspheres by Breath Figures in Different Nonsolvent Atmospheres, Acta Polymerica Sinica, 2014, 12, 1606-1612.
  • [18] Bai W., Xiao X., Cai L., Fabrication of Morphology-controlled Nano/ Microstructural Polyfluorene in Mixed Nonsolvent Vapor Atmospheres, React. Funct. Polym., 2014, 76, 13-18.
  • [19] Oyumi Y., Brill T.B., Thermal Decomposition of Energetic Materials. 14. Selective Product Distributions Evidenced in Rapid, Real-time Thermolysis of Nitrate Esters at Various Pressures, Combust. Flame, 1986, 66(1), 9-16.
  • [20] Kissinger H.E., Reaction Kinetics in Differential Thermal Analysis, Anal. Chem., 1957, 29(11), 1702-1706.
  • [21] Kissinger H.E., Variation of Peak Temperature with Heating Rate, J. Res. Natl. Bur. Stand., 1956, 57(4), 217-222.
  • [22] Hu R.Z., Shi Q.Z., Kinetics of Thermal Analysis (in Chinese), Science Press, Beijing, 2001, pp. 65-66; ISBN 7-03-00946-3/O.1511.
  • [23] Ozawa T., A Modified Method for Kinetic Analysis of Thermoanalytical Data, J. Therm. Anal. Calorim., 1976, 9(3), 369-373.
  • [24] Zhan D., Cong C., Diakite K., Tao Y., Zhang K., Kinetics of Thermal Decomposition of Nickel Oxalate Dihydrate in Air, Thermochim. Acta, 2005, 430(1), 101-105.
  • [25] Coats A.W., Redfern J.P., Kinetic Parameters from Thermogravimetric Data, Nature, 1964, 201, 68-69.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-85fe7752-06c8-40df-818e-f97134ba65c5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.