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Abstract. We study the Cauchy—Dirichlet problem for a class of nonlinear parabolic
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1. INTRODUCTION

In this paper, we are concerned with the existence and regularity properties of the
following Cauchy—Dirichlet problem
uy — divA(z, t, Vu)
= —div (|F[P@)=2F + a(z,t)|F|?®)=2F) i Qr,
u=g on 09 x (0,7),
u(-,0) =g(-,0) on Q x {0},

(1.1)

where Q7 = Q x (0,T),  an open, bounded Lipschitz domain in R of dimension
N > 2 and 0 < T < oo. Throughout the paper we assume that the functions
A:QxRT xR — R are such that A(-,-,() are Lebesgue measurable for all ¢ € R
and A(x,t,-) are continuous for almost (x,t) € Qp. We also assume that the following
structure conditions are satisfied

A, t,0¢ = 1 (|7 + a(a, 1)) (1.2)
Az, ,0) < Ca (16107 + afa, pl¢#=071 ), (13)

where C1 and Cy are positive constants.
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The modulating coefficient a(-,-) is assumed to satisfy the following
Jai, a0 € RT 1oy < a(x,t) < as. (1.4)
In addition, we suppose that

The exponents p and ¢ are measurable functions in Q7 satisfying the following
conditions

2N - — essi +
= < p~ =essinf p(z,t) < p(x,t) < p™ =esssup p(x,t) < oo,
s inf p(a. 1) < pla1) ssup p(a 1 o
|p(x1,t1) _p(xZat2)| < w(dp((xlvtl)v (m2ﬂt2)))7
and

2N
N+2

|Q(x17t1) - Q(l’g,tgﬂ < w(dp((xhtl)v (562,252))),

< q =essinf q(x,t) < gz, t) < g7 =esssup q(z,t) < oo,
Qr Qr (1.7)

where w : [0,00] — [0,1] denotes a modulus of continuity. More precisely, we shall
assume that w(-) is a concave non-decreasing function with lim, o w(p) = w(0) = 0.
Moreover, the parabolic distance is given by

dy((x1,11), (22, 12)) = max {|x1 — 2ol — t2|} .

In addition, for the modulus of continuity w(-) we assume the following weak logarithmic
continuity condition
lim sup w(p) log <1> < +o0. (1.8)
p—0 14
Equations of the type (1.1) where the modulating coefficient a(z,t) could be
degenerate on a set of zero measure are often called the double phase problems. The
study of the double-phase problems started in the late 80th with the works of Zhikov
in a series of remarkable papers [23-25] who introduced such classes of operators
to describe models of strongly anisotropic materials by treating the Euler-Lagrange
equation of the functional

Y9
; a—xiai(a:,Vu) =b(x), ae x€Q, (1.9)

where a’ satisfy some nonstandard growth conditions like, for example,

Zaég_ (2, NN >m (1+ |§\2)% A2, VG A eRYN ae x e,
i

q—2
2

lag, (2, Q)| <M (1+[¢P) 7, VCeRY,ae zeQ, Vij
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for some positive constants m, M, and for exponents ¢ > p > 2. Integral functionals
of the form (1.9) have been considered by several authors concerning regularity
results and non-standard growth, see for example, Baroni-Colombo-Mingione [6],
Filippis—-Mingione [10], Ragusa—Tachikawa [18] and the references therein. Later on,
Marcellini [17] and Bogelein-Duzaar—Marcellini [8] give some existence results of a class
of parabolic equations of the type

uy = divDe f(x,u, Vu) — D, f(x,u, Vu), (1.10)
with a convex integrand f : Q@ x R x RY — [0, +oo0] satisfying the p, g-growth condition
of the type

P vICP < flw,u,¢) < ML+ Jul” +[¢[%),

with some positive constants v, M. It is worth mentioning that Arora—Shmarev [5]
recently studied the variable exponent case of (1.10). In the parabolic setting, the
case p = ¢ is well understood. Whereas, existence and regularity results for parabolic
systems with p-growth in the cases of constant or variable exponents can be found
in [13,14,20] and references therein.

In this framework, a particularly relevant class of interest is given by equations
where the modulating coefficient a(-, ) is bounded away from zero and thus the growth
of the flux is controlled by operators with distinct exponents. Those types of equations
are of a (p,q)-phase which is a special case of the double phase problems. Such
equations arise in many mathematical models of physical processes. An important
example where equation (1.1) arises is the study of the following nonlinear Schrédinger

equation
e = =AY + () — M (@) |92 — Agyp + W' (z,9),

where A1p = div(|Ve|772V)) is a g-Laplacian. This class of equations was introduced
by Derrick [11] and later by Benci-D’Avenia-Fortunato-Pisani [7] for the elliptic case,
where (p,2)-equations were used as a model for elementary particles in order to
produce soliton-type solutions. We also mention the works of Cherfils—I’yasov [9],
where the authors studied the steady state solutions of reaction-diffusion systems, and
of Zhikov [23] who studied problems related to nonlinear elasticity theory. It is worth
noting that the existence and the regularity properties of the elliptic case of (1.1) has
been studied by Ambrosio-Radulescu [2], Zhang-Réadulescu [22] and references therein.
Moreover, the boundedness of the solutions to (1.1) with the homogeneous Dirichlet
boundary conditions can be derived from Theorem 1 in [13].

The aim of the present paper is also to develop a variational approach in the
parabolic setting in the spirit of papers [4, 15, 16, 21]. The approach we used to
prove the existence and the uniqueness of (1.1) is to construct a family of solutions
by Galerkin approximation, which solves the homogeneous case of (1.1). Next, we
deduce some energy bounds. These estimates with the compact embedding yield the
desired convergence of the approximate solutions to general solutions. Afterward,
by using the well known Moser’s iteration technique which is essentially based on
a combination of a Sobolev and a Caccioppoli type inequalities, the question of local
boundedness of the solution to (1.1) is proved. Finally, for sufficiently regular data
and by using the approach presented in [4], we derive the global boundedness of the
weak solution to (1.1).
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2. PRELIMINARY AND MAIN RESULTS

2.1. THE FUNCTION SPACES

We collect here the background information on the variable Lebesgue and Sobolev
spaces used throughout the paper. We refer to the monograph [3] for further informa-
tion.

Let © be a bounded domain with Lipschitz-continuous boundary p : Q — [p~, p*] C
(1,400) be a measurable function. The set

LP@(Q) = { u : u is a measurable real-valued function , / lu(z)|P@de < oo

Q

equipped with the Luxemburg norm

u()\x) p(z) S )

ull oter ) = inf mw:/
Q

is a reflexive and separable Banach space and C§°(Q) is dense in LP(*)(Q). The norm
| [ zr() () can be estimated as follows:

N T + T
Lt el oy < [ 1P d S 1k gy Yu € DPO@) (2)
Q

Moreover, if pi(z) > po(z) a.e. in Q, then LP*(*)(Q) is continuously embedded
in LP2(*)(Q) and

ull Lp2r ) < Cllull v ),  Yu € (@),

Let W1P(®)(Q) denote the space of measurable functions u such that, v and the
distributional derivative Vu are in LP(*)(Q). The norm

||UH1,p(z) = ||qu(oc) + ||vu||p(x)

makes W1P(#)(Q) a Banach space. It is well known that if p(z) satisfies the log-Holder
condition (1.6), then C*°(Q) is dense in W1 P()(Q). Moreover, we can define the

Sobolev space with zero boundary value Wo™*™ (Q) as the closure of the C§°(2), with

respect to the norm of W1P(®)(Q). Tt is known that for the elements of Wol’p(z)(ﬂ),
the Poincaré inequality holds

el Lo ) < CllVull o (@,
and an equivalent norm of W()l ’p(x)(Q) can be defined by

lullyree g = VUl Loe @)
o ()
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For the study of parabolic problem (1.1), we need the spaces of functions depend-
ing on (z,t) € Qr. With a slight abuse of the notation, we consider more general

nonstandard parabolic Sobolev. Then, by W, (x’t)(QT) we denote the Banach space
Wee(Qr) = {u e I"9(Qr) : Vu e DOD(Qr),u — g € L0, T; Wy ()}
equipped by the norm
lullweeo @y = vl preoes + VUl ppeo @)

If g = 0 we write Wé’(m’t)(QT) instead of Wg)(x’t)(QT). WrEH (Qr)" is the dual of
Wé)(w’t)(QT) such that

wo, ..., wn), wo € LP'@D(Qr), w; € LP @0 (Qy),
Vo € WD (Qp),

N
(w,¢) = / <w0¢) + Zw1D1¢> dxdt.
=1

Q

we WPED(Qr) <

Let us now define

W(Qr) = {w e WPED(Qr) : w, € WW”(QT)'} :
such that if w € W(Qr) then there exists w; € WP (Qr)’ satisfying

<wp, P >=— /wcpt dxdt, Ve e C3°(Qr).
Qr

The previous equality makes sense due to the inclusions

WPED(Qr) — LA(Qr) = (LA(Qr)) — WPED(Qr),
which allow us to identify w as an element of W?(@*)(Qr)". For more results about

spaces WP (Qr) and WPEH (Qr) see for instance [4,16] and references therein.

2.2. IMBEDDING AND TECHNICAL LEMMAS
To derive our existence and regularity results, we will need the following

Lemma 2.1 ([16, Lemma 2.3]). Assume that u € C°([0,T]; L*(2)) N Wg(x’t)(QT) and
the exponent p satisfies the conditions (1.6) and (1.8). Then there exists a constant
C = C(N,p~,p",diam(Q)), such that the following estimate

4p+

”uHIZ,;(m,t)(QT) <c (|u||ﬁ-+02(07T;L2(Q)) + 1) / |Vu‘p(z’t) + 1 dxdt (2.2)
Qr

holds.
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Theorem 2.2 ([16, Theorem 1.3]). Let Q C RY an open, bounded Lipschitz domain

with N > 2 and p(x,t) > 13—4]\_’2 satisfying (1.6) and (1.8). Furthermore, define

p(z,t) = max{2,p(z,t)}.
Then the inclusion W (Qr) — LP@D(Qr) is compact.
Proposition 2.3. If u € L>(0,T;L*()) N LP(0,T; Wy P(Q)) and p > ]37127 then

we have the following estimation

N
N+p

/ lu(z,t)|" ddt
Qr

<C esssup/|u(x,t)\2 da:dt+/|Vu(m,t)|p dxdt 3 ,
t€(0,T) o &
T

where | = p%.

Proof. Clearly [ > 2 for p > ]\2,—12 Then, by using Proposition 3.1 in Chapter I of [12],
we get

~
/|u(:r7t)|l dxdt < C esssup/|u(ac7t)|2 dxdt /|Vu(m,t)\p dxdt.
Qr 0D g Qr

Therefore, by applying Young’s inequality we get that

N
N+p

/|u(x,t)|l dxdt <C esssup/|u(a:,t)\2 dmdt+/|Vu(x,t)|p dxdt
te(0,T)
QT Q QT

This completes the proof. O

2.3. MOLLIFICATION IN TIME

It would be technically convenient to have at hand a formulation of weak solution
involving the time derivative u;. Unfortunately, solutions of (1.1), whenever they exist,
possess a modest degree of time regularity, and, in general, u; has a meaning only
in the sense of distributions. In order to be nevertheless able to test properly, there
are several possibilities to smooth the solution with respect to the time direction.
To overcome these faculties, we consider the Friedrichs mollifier as was done in [1].
Indeed, taking the kernel

p>0, peCFMRY), plx)=0 for |z|>1, /p(x)dzzl7

RN
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we introduce regularization of f € L'(RN+1) by

t+h

ﬂf:nmwzwﬂ//}mﬂm@—mwm,
RN

pu(x) =h™Np(h~'x)

The basic property of the mollification (2.4), which can be retrieved from [1, Lemma 3.1],
is summarized in the following:

(2.4)

Lemma 2.4. If the exponent p satisfies the conditions (1.6) and (1.8), then fr — f
in LP@D(Qr) as h — 0, for any f € LP@(Qr).

2.4. FORMULATION OF THE PROBLEM AND MAIN RESULTS

We consider a space-time cylinder Q7 = Qx (0,T), where Q € RY is a bounded domain
with N > 2. On the lateral boundary 9 x (0,T'), we consider the Cauchy—Dirichlet
boundary data given by

g € CO([0,T); L2()) N WPEH (Qp) N W=D (Qp), (2.5)
drg € L@ (0, T; W17 (Q)). ‘
As for the right-hand side of (1.1), we assume that
F e @9 (Qp) 0 L9 (Qy). (2.6)

In the following, we describe the concept of weak solutions to Cauchy—Dirichlet
problems as for instance those considered in (1.1).

Definition 2.5. Assume that g and F fulfill (2.5) and (2.6). We define a measurable
map u : Qr — R in the class

we C([0,T); L*(Q) N WPED(Qr) n W=D (Qr)  with Ou € W=D (Qr),

where s(x,t) = max{p(z,t),q(x,t)} as a weak solution to the parabolic double phase
associated to (1.1) if and only if the variational equality

T
/u¢dx + / —upy + Az, t, Vu).Vo dxdt
Q 0o Qr (2.7)
= WA E 4 a(x, t T xdt
[ [IFF=0-2F + a(a o110 2P| V6 dad

Qr

holds for every test function ¢ € W(If(x’t)(QT) N Wg(x’t)(QT) with Oy € W=D (Qr)’.

We can write (2.7) in a way that is technically more convenient and involves the
discrete time derivative. This can be accomplished by using the Friedrichs mollifier of
a function. Then, we get the following lemma.
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Lemma 2.6. If u is a solution of equation (1.1) in the sense of Definition 2.5, then
for uy, defined in (2.4), and for any 0 < t; <ty < T, the following relation

to
//{uh,tap + [A(z,t, Vu)], Vo
t1 Q

- [|F|p(m’t)*2F + a(z, t)|F|Q<mvt>*2F] w} dadt =0,

holds for any tested function ¢ € Wé’(x’t)(QT) N Wg(z’t)(QT) with O;p € W@ (Qp)’.
Proof. We introduce the following regularization operator:
t
1 = o) =17 [ [ fonone - ) dydr
t—h RN
Consider equation (2.7) with
o=TI"x), ¢eW Q) nWi™(Qr) with dyp € W& (Qr).

Since

ta
—h
—/ualaigp)é) dxdt = //Uh,ﬂPX dxdt,

Qr t1 Q

it follows that

to
[ [msex+ e v, (e
t1 Q
— [|IFPeD=2F + a(a, 1) | P12 V((px)] dxdt =0,

Passing here from y € C§°(t1,t2) to characteristic function of the segment [t1, 2],
we obtain the desired relation (2.8). O

The main results are given in the following theorems.

Theorem 2.7. Assume that g and F fulfill the assumptions (2.5) and (2.6). Then,
there exists a unique solution

ue CO[0,T]; L2(Q) N WPED(Qr) n WD Q) with dyu € W=D (Qr)
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of the problem (1.1) in the sense of Definition 2.5 such that

0<t<T

sup /|u(~,t)|2 dm+/|Vu|p(’”’t) dmdt+/|Vu|q<x’t) dxdt
Q Qr Qr

< c{|g<-, 0)l132(e) + 9] 07322 + 106917 0 gy

+/|Vg|p(x’t)+|Vg|Q(x’t) d:cdt+/\F|p(x’t)+|F|’I(“"t) dazdt}

QT QT
with a positive constant
C = C(N, oy, pt, ¢F, diam(Q)).

Theorem 2.8. Let the assumptions (1.2)-(1.8), (2.5) and (2.6) be satisfied. Let u be
the solution to (1.1) in the sense of Definition 2.5. Then w is locally bounded in Q.

Theorem 2.9. Let the conditions of Theorem 2.8 be fulfilled. Additionally, we assume
that g € C1([0,T]; W1°°(Q)) and

div(|F|PEY=2F 4 a(x, t)|[FI@D2F))| < h(z,t), (2.9)

where h is a nonnegative function and h € L*(0,T; L>(2)). Then, if u is a weak
solution to (1.1) in the sense of Definition 2.5, u is globally bounded in Q.

3. EXISTENCE AND UNIQUENESS

In this section, we will establish some existence results to problem (1.1). These results
will be used to prove our main existence Theorem. The starting point is to consider
the following homogeneous case of equation (1.1).

ug — divA(x, t, Vu)

= —div (|F[P@)=2F 4 a(z,1)|F|?@)=2F) in Qr,

u=0 on 90 x (0,T),
u(-,0) = g(-,0) on Q x {0}.

(3.1)

Furthermore, initial values g(-,0) € L?(2) are given and the vector field A(z,t, Vu)
satisfies (1.3)—(1.5) and F € LP@1)(Qr) N L9 (Q7), also the exponents p and ¢ are
complied with (1.6)—(1.8). Then, we have the following lemma.
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Lemma 3.1. There exists at least one weak solution
we CO0,T); L2(Q)) n WP Q) n WIS Q) with dyu € W@ Qg

to the equation (3.1) in the sense of Definition 2.5 such that

sup /|u(~,t)|2 dx+/\Vu|p(z’t) dxdt+/|Vu|q(z’t) dzdt
0<t<T
Q Qr Qr

< C{Ig(~, OlIZ20) + / |Fp@b 4| plat) dxdt}
Qr
with a positive constant
¢= C(Na alapia qia dlam(Q))
and
s(z,t) = max(p(z,1),q(z,1)).

+ +
Proof. Let {¢}2, € Wog* NWy'? be an orthonormal basis in L?(€2). Next, we fix
a positive integer m and define the approximate solution to (3.1) as follows

m

u™(z,t) =Y O ()i (),
i=1
where the coefficients Ci(m) (t) are defined via the identity

/{u;%i(x) + [A(:c,t, Vu™) — |FIP@)—2F — a(m,t)|F|q<z’t)_2F} qui(x)} dz =0
Q

(3.3)
for i =0,...,m and t € (0,T) with the initial condition
(CY(5) = Fi(t, 0™ ()., (1), 3.0
CI(0) = [0, 0)¢i(w) da, i =1,...,m,

where we abbreviated

Fi(t,) = —/[A(-,t,vu<m>)

Q

— |F( PO ) = a(a, ) F (01D 2E( 1) | Vi) da,

since {¢;(z)} is orthonormal in L?(Q2). Therefore, by Theorem 1.44 in [19], we assume
that for every finite system (3.4), there exists a solution C’Z-(m)(t), i=1,...,m, on the
interval (0,T,,) for some T, > 0. Next, we multiply (3.3) by C'Z-(m)(t)7 we integrate
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the resulting equation over (0,7) for an arbitrary 7 € (0,7,,), and we sum up the
resulting equation over ¢ = 1,...,m. Then, we obtain

0= Z / ) g (@) C™ () + [A(:c,t,Vu(m))

ZIQ

— ‘F‘p(:c,t)—2F — a(z, t)‘F‘q(:cf 2F} Voi(x )C(m (t) dzdt
(3.5)
= /ugm)u(m) + {A(%t,Vu(m))

Q.

— |FPED=2p — ga, t)|F|Q(x’t)_2F] Vu™ dzdt.

Since g(-,0) € L2(Q2) and {¢;};—, € L?(£2), we get the following estimate

/|u ™ (-,0)|? da

2 m 2
~ [ o] do= [|Y o000 d o) do
Q =1 Q i=1 Q
2
< [13 [ st00t) do oi@)| dz= [ 1ot 0P da,
Q =19 Q

since {¢;};=, is an orthonormal basis in L?*(Q2). Therefore, the first term in the
right-hand side of (3.5) reads

/ ugm)u(m) dzdt

Q,
/8t (m)} dxdt = /’ (m)( 7')’2 dm—%/‘u(m)(-,O)‘Q dx

Q Q

m 2
2§/W)hﬂ‘w—§thmmw

Q

for all 7 € (0,T,).
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Therefore, (3.5) becomes

1
§/|u(m)(~,7)|2 der/A(x t, Vu™). V'™ dzdt
° o (3.6)
< 5”9(',0)”%2(9) Jr/ [|F|p(m’t)F+a(x,t)|F|q(z’t)72F Vo™ dzdt,
Q,

for all 7 € (0,T,,). Next, by using (1.2)—(1.4) on the left-hand side of (3.6) and
estimating the right-hand side of (3.6) by the absolute value, we obtain the following

/|u ™ (., 7))? dm+Cl/|Vu ™) |p(@;t) da:dt+a101/|Vu(m)|q(I Y dadt
1

2 p(m,t) —l (1)
S §Hg(u0)||L2(Q) +/W81 »( ,)|F|p dxdt

+SZ p(it)
- Q/ q(fvlvt)

1

< Slo. Oy + € [ 1P 4 [FJ duas

T

-1
g| Vulm [p@:t) dxdt_,_/mglfql(m,t) |F|9@Y dydt
q(z,1)

.

e| Vul™ 9@ dydt

Q.

+ = / (VU™ PED ddt + = / (Vu(™ |20 dadt,
p q

for a.e. 7 € (0,T,,), where we used Young’s inequality for € € (0, 1). Then, we obtain

sup /|u(’”) )? dx + / |Vul™ P& dadt + / |Vu™ 9@ gt

0<7<Tm
(3.7)

< 1lg(,0)|2 (g +C / [FPED | Pat s,

Qr,

m

Therefore, (™) is uniformly bounded in L>(0, Ty,; L?(22)) and Vu(™ is uniformly
bounded in LP@H(Qr ) N LY@ (Qr, ). Next, by using (2.2) and (3.7) we get
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the following estimate

||U(m) ||Lp(wvt>(QTm)

<of[Joe oo
N {[ R P LA

1
+C / 1+ |F|P@D 4 |Fat@D dxdt}p (3.8)
Qr,

m

sO{IIg(-,O)Ii2(Q)+ / 1+ |FPP@ED 4| Flatb dxdt}p
Qr,

m

By the same method, we get also

™ e,y

1 4qt
-\ vt (3.9)
SC{IIQ(',O)II%Z(QW / 1+ |[FP@D 4| Fla@t) dxdt} ( )

Trn,
Consequently, we have shown that «(™ is uniformly bounded in W»®(Qp )N
W@t (Qr ) and L®(0, Tp,; L?(Q)) independently of m. As a result, the solution of

system (3.4) can be continued to the maximal interval (0,T).

Our next aim is to derive the uniform boundedness of uﬁ"”) over W@ (Qrp)".
For this reason, we introduce the following subspace

Won(Qr) = {n =) digi, di € cl([o,TD} C WD (@) n w0 Q).

i=1
Next, we choose

m

p(x,t) =Y di(t)pi(x) € Wi (Qr)  with di(0) = ds(T) =0

i=1

as a test function in (3.3). Then, we get

— /u(m)got dxdt = /ul”gp dxdt
QT QT

= / [A(a;, t, Vul™) — |FIP@O=2F _ q(x, t)|F|q<zvt>—2F} Ve dudt.

Qr
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Note that 0;¢ exists since d; € C([0,T]). Then, we get the following estimate

/ u™ o, dadt
Q

< / (1A, t, Ful™) | 4+ [FPEO 7 4 ae, )| P71 V| dudt

Qr

<c / [|Vu<m>|p<m’t>1 +[Tulm 01

J (3.10)

FpEn |F|q<w>t>-1} (V| + lo]) dadt

< C{ [t peo-1 4 ppeo-1)

L' .0 () Il w0 am)

+ H|W<m>|q<m,t>71 4 |F|q<z,t>71‘

e o P00 |

Next, we are going to prove the boundedness of terms in the right-hand side of (3.1).
Therefore, by using (2.1) and (3.7), we obtain

|V P =1 | ppt-1

Lr' (2.0 (Qq)
o
=

<C / (Vul™ [P@) dgdt + / |F[P@Y dadt + 1
Qr Qr

< C(N,p*,p~,diam(2)).
Also, by the same method we get

< C(N,q*, ¢, diam(Q)).

H|vu(m)|q(x,t)—1 + |F|at@ -1
L' @) (Qr)

Thus, by combining all the previous estimates into (3.10), we obtain

/ugm)go dxdt| < O(N’O[17p:t’q:t7diam(Q))||(pHWs(m,t)(QT)
Qr
where s(z,t) = max{p(x,t), ¢(z,t)}. This shows that ui’”) € W@ (Qr). Accordingly,
by (3.7), (3.8), and (3.9) we get that
ul™ e W§ D (Qr) € L7 (0, T; Wy (),
ul™ € Wi (Qr) C L (0.T: Wy (Q),
ul™ € L(0,T; L*(Q)),
u{™ e WD Q7).
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Therefore, there exists a subsequence {u(™} and a limit map w such that

ul™ —* y in L°(0,T; L*(Q)),
Vu™ = Vu in LPED(Q7),
Vul™ — Vu in LD (Qr),
ugm) — Uy in W@ (Qr).

Consequently, by using Theorem 2.2, we get

u(™ — u  strongly in L5 (Qr),
w™ =y aein Qp

with §(z,t) = max{2, s(x,t)}. Further, the growth condition (1.3) of A(z,t,-) and the
energy estimate (3.7) imply that sequence { A(x, t, Vu(™)},,cn is bounded L &8 (Q7).
Then, for another subsequence there exists Ag € L* (*Y) (Q7) such that

Az, t, Vul™) = Ay in L @D (Qp).

We claim that A(x,t, Vu) = A for almost every (x,t) € Q. Indeed, we have for
every s < m, where m € N is fixed, that

- / u™ep + {A(w, £, Va™) — |FP@O-2F _ g(z, t)|F|‘1(“’t)_2F] Ve drdt =0,

Qr
(3.11)
for all test functions ¢ € Wy(Q2r). Then, by passing to the limit m — oo, we have

— / upp + [AO — |FP@D=2F _ gz, t)|F|9@D72F | Vo dadt = 0, (3.12)

Qr

for all ¢ € Ws(Qr) C Wg(x’t) Qr)n Wg(x’t)(QT). According to the monotonicity
assumption (1.5), we get

/ <A(x,t, Vul™) — Az, t, Vw)) V('™ —w) dadt > 0, (3.13)

Qr
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for all w € W, (Q7). Therefore, by adding (3.11) to (3.13) with ¢ = u(™) — w, we get

0<— /ugm) (u'™ —w) + [A(x,t,Vu(m))

Qr

— |F[PED=2F — a(x, t)|F|q<fvt>—2F] V(™ — w) dedt

+ / (A(x,t,Vu(m)) = A(xvt,Vw)) V(u'™ —w) dedt (3.14)
Qr
=— / ugm) (ul™ —w) + [A(%tavw)
Qr

~ [FPeNF —afa, t>|F|q<”vf>—2F] V(™ ~ w) dedt.

As a result, by testing (3.12) with ¢ = u(™) — w, subtracting the resulting from (3.14)
and passing to the limit m — oo, we arrive at

- / [Ao — Az, t, Vu)] V(u — w) dzdt > 0,
Qr
for all w € W(Q2p). Since W (Qr) C Wg(m’t)(QT)ﬂWg(m’t)(QT) is dense, we are allowed

to choose w € Wéj(gc’t)(QT) N Wg(x’t) (Q7). On that account we choose w = u & &£ with
e Wg(m’t)(QT) N Wg(m’t)(QT) and € is an arbitrary constant such that

—5/ (Ao — A1,V (u + £))] VE dadt > 0,
Qr
Therefore,
/ [Ag — A(w,t, Y (u + £€))] VE ddt = 0.
Qr
Finally, after passing to the limit € — 0 we obtain

/ [Ag — A(z,t, Vu)] VE dadt =0, V¢ € WP (Qr) n W=D Q).
Qr

Hence, Ag = A(z,t,Vu) a.e. in Qp.
To complete the proof, we need to show that u(-,0) = g(-,0). First of all, we should
mention that we get from (3.12) and integration by parts the following

[ i [Aunt, Vu) — |FPED2F — a(a, ) [ F17072F | Ve dedt
Qr

~ w0 ds,

Q

(3.15)
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for all ¢ € Wg(Lt)(QT) N Wg(m’t)(QT) with ¢(-,T') = 0. Moreover, as in (3.11) we have
that

/u(m)gat - [A(x,t, Vul™) — |FP@O=2F gz, t)|F|9@D2F | Vo dodt
Qr

3.16
:/wmwxﬂwm o

for all ¢ € Wg(m’t)(QT) N Wg(m’t)(QT) with ¢(-,T) = 0. Also, from the definition
of u(™) we get

(m) Zcm Zl/g d.’l? Cbz( )

m—)oo Z/g dCL' ¢z( ) = g(-,O).

That being so, after passing to the limit m — oo in (3.16), we have

/ugot - [A(x,t, Vu) — |[FIPED72E — oz, t)|F|9@Y2F |V dzdt
Qr

(3.17)
- [0 da.
Q
Hence, by comparing (3.15) and (3.17) we get the desired result. O

Now, the existence of solutions to the initial value problem (3.1) can be extended
to our main problem as follows

Proof. As a consequence of Lemma 3.1, there exists at least one solution
v e L0, T; L2(Q)) n WD (Qp) n W™ ()
to the following problem

— divA(z, t, Vv)
= —div (|F|P®)72F + a(z,t)|F|7"@Y=2F) — 0,9 in Qr,
v=20 on 90 x (0,7),
v(,0) =g¢(,0) —g on Q x {0},

where
A(z,t,Vv) = Az, t, V(v + g)).
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Knowing that 8,g € L® ) (0, T; W=1*")") we have

[ o1 v dedt <1091 0160 [0l iz

Qr
< CENOIN, sy + [ V0 das
Q
< CE T, ooy + / VP dudt 41,
Q

where we used (2.1) and Young’s inequality. Therefore, by using the proof of Lemma 3.1
with w = v + g, it is easy to show that w is the desired solution to (1.1) with the
following energy estimate

sup /|u(~,t)|2 dx+/|Vu|p(””’t) dxdt+/|Vu\q<w’t) dxdt
0<t<T
Q Qp Qr

< c{||g<-,o>||iz<m gl 0.2z + 109170 0 s e

+ / [Vg|P@D 4 |Vg|?@D dedt + / |FP@t) 4 platet) dmdt}7
Qr Qr

where we used the fact that
(Va9 < 20" || o) 4 [Vgpteo]
which implies that
|VulPh) — 2p+71|vg|p(w,t) < 2p+71|vv‘p(z,t)7
and also by the same method that
[Vu|9@®) — 2071y gla@t) < 20" =1 gp|a@D  and  |uf? - 2|g[? < 2fvf%,

Finally, we show the uniqueness of the weak solution. Let u; and us be the solutions
of (1.1). We consider ¢ = u; — uz as a test function in the weak formulation of both
solutions. Then, by subtracting we obtain

/ [(ur —u2)(ur —u2) — (A(x,t, Vur) — Az, t, Vuo)V(u1 — ug))] dzdt = 0.
Qp
Therefore, by using (1.5) we arrive at

OZ%/@W_WVMﬁ:/@rWMm—W%ww

QT SZT
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Then, we get

1
0 < Sllur(t) = ua(t)l72() <0, V€ (0,T],

since uq (-, 0) = ua(-,0) = g(+,0). Hence, we get the desired result. O

4. LOCAL BOUNDEDNESS OF THE SOLUTION

Let K(p) ={z € Q:|z| < pg} and 0 < p < 1 be small enough such that

8
Quoc = K(p=) x (to — p°,t0) C Qp,

and
2N _ . 2+ N
N2 < Ploe = e%iglf p(x,t) < plz,t) <l= ﬂT, V(z,t) € Quoc, (4.1)
and
2N _ 2+ N
_ = i < <[l=pf—F .
Nia < o estli?f gla,t) < q(zt) Sl=P——, V(2,t) € Qoc;  (4.2)

where 8 = max(p,.,q,.) and @ = max{p™,¢"T}. We claim that u is bounded in
K(%pg) x (to — 39", o). To prove this, we take pg, p1, 7o and 71 such that

§pa§p1<po§pa, to—p S7'0<71§to—§ﬂ~

Let £(x) and #(t) be piecewise linear continuous functions depend respectively on
and ¢ such that

1 fi < 1 for t >
ez = b or |z| < p1, and () =4 " ort> T,
0, for |x| > po, 0, for t < 79.

Then, we have

1 1
and 0<4¢ <

Po — P1 T1 — To

0< ¢ <

In the weak formulation (2.8) we take p = £*9*(up, — k)4, where uy, are regularizations
of the form (2.4), k a positive constant and (up — k) = max{up — k,0}. Then, for all
t € (0,T] we have
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0= /uh,tgp + [A(z,t, Vu)]p.- Ve
(o

~ [|FPO72F 4 a(w,0) | P10 72F| Vo dedt

t
+/A(:z:,t,Vu).Vg0 dxdt
Q4 Q 0 Qy

—/ {|F|p(m’t)*2F—|— a(x,t)|F|q(“"’t)*2F] Ve dxdt
o

o 1
2 2 [t w02 det ] [ 00— Ky (0t) daat
Q¢

Q

— — | up dxdt—!—/wp dx
h—0

(4.3)

+c/ga¢a (19670 4 a(e, )| Fult=D| dudt
Q¢

— C/aga—lg'w(u — k) {|vu|p<’c’t)—1 + a(x, t)|Vu| 1 @O dedt

—/[|F|p(“>—1F+|F|‘J<’”»t>—1F} Vo dudt.

Q

Next, by using Young’s inequality we get the following estimates

[emtewe b [P e, 0Vl dvar
(a=Dp(a.t)
<e / g1 | VuP@ drdt
K (k,po,70)
+C(e) / Y (u — k)PED | VEPED drdt
K (k,po, To)
{e—La(z.t) « (z,t)
+u g rcoE=y qp [Vu|? dzdt
K (k,po,70)
/ 1/}0( Q(x t) |V§|q<x ) drdt
K(k,po,70)
<e / €944 | VP8 dzdt + - / (u— k)P@D) drdt
(po — p1)?
K(k,po,70) K (k,po,70)

+u / €awa|vu|q(ﬂc,t) dxdt + - / (’LL _ k)q(x,t) dxdt,
(Po = p1)1

K (k,po,70) K (k,po,70)
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and also,

/ [|F|P(x,t)_1 + |F|q(w¢)—1} Vo dxdt

Q
< C(a){ / |F[P@Y dadt
K (k,po,7o0)
1 (u — kP& dxdt
(Po = p1)P" (4.5)
K(k,po,‘rg)
+ / |F|9@Y dadt + % / (u — k)1@D da:dt}
(po — p1)?
K (k,po,70) K (k,po,70)
+ s{ / Y| VulP™ ) dadt + / €2 V|10 dxdt},
K (k,po,70) K (k,po,70)

where we used the fact that 0 < & < 1, pfm(ﬁ’)tll > -2 and q(q;ﬁ’)tzl > —2- which

. (a=1)p(a.t) N (a—1)aa.t) N
imply that £ ?Eo-1 < £* and £ «@=H-T < £ Also, we took

K(kapOaTO) - {K(pO) X (T(),to)} N {U > k}

as the effective domain of integration. Therefore, by combining (4.4) and (4.5) into
(4.3) we arrive at

esssup/go‘wo‘(u — k)2 dx

te(0,to) A
+ / E2Y|Vu|Proe dxdt + / E%)% |Vl %o dxdt
K (k,po,70) K (k,po,70)
1

<C — k|? dzdt
N {7'1—7'0 / fu = [ de (4.6)

K (k,po,70)

i

+— u— k)@Y dadt
(po — p1)P" ( )
K (k,po,70)

+ / |FIPE 4 | F|9@0 dadt + / £ da:dt},

K (k,po,70) K (k,po,70)
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where C' is a positive constant independent of k, pg, p1, 70 and 7. For [ = B%,
it follows from Proposition 2.3 that

es
(u— k) dedt

K (k,p2,72)

< C’{ / |Vu|Proc + |Vu|%oe dadt + esssup / |(u— k)4 |? da

K (k.p1,7m1) O o (4.7)
1 -
+ W / (u - k)ploc dxdt
K(k,p1,71)
1 a
+ W (u - k‘) toc dxdt s

K (k,p1,71)

for all %pg <pa<p;r <po< pg and tg —p® <19 <7 < <ty — %pﬁ. Afterward,
by combining (4.6) and (4.7) and taking po — p1 = p1 — p2 and 7, — 79 = T2 — 71,
we obtain

_N
N+3
/ (u — k)" dxdt
K(k,pg,‘l’g)
1 1
< c{ / lu — k|? dedt + ——— / (u— k)P@Y dzdt
To — T (po — p2)P
K (k,po,70) K(k,po,70)
1
+ u— k)10 drdt
(po — p2)a" ( )
K (k,po,70)
+ / |F|P@ 4 | Fla@h 41 dxdt},
K (k,po,70)

where we used (2.1). Since § > 13—12 which implies that [ > 2 and by using (4.1) and
(4.2) we get the following estimates

(u— k;)p(””’t) < (u-— k)up(m’t)_1 = (u— k)ul_lup(m’t)_l <C(u— k!
=Clu—k)(u—k+k)"'<C((u—k)'+u-kE")
<C((u—k)\'+k£,

and also, by the same method

(u—k)1@D <C((u—k)' +k).
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Therefore, if k > ko (for ko > 0 large enough) we get

N
N+B
(u — k) dzdt
K(k,p2,72)
1 1 % 1—2
<c [ tu ! dodt) 15 o)
T2 —To
K(k:,poﬂ'g)
1 / 1 1
S u— k) dedt + K'| K (k, po, 7
el (u—k) K (s o, 7o)
K (k,po,70)
Kk ool
If K > h > kg, we have
u—hl uw—hl
K(k < dxdt < dxdt.
|K (K, po, m0)| < / E—h Tat < P h T
K (k,po,70) K (h,po,70)
Then (4.8) can be rewritten as
N
N+B
/ (u — k) dzdt
K(k,p2,7m2)
1
gc{ (k — h)*>! /‘ (u — h)! dzdt
T2 —To
K(k7p0,‘l’o)
1 k!
+— 14— / u—h) dzdt
(po = p2)* ( (k_h) ) ( )
K(kJ)OvTO)

+ (k—h)™ / (uMUhﬁ}

K (k,po,70)

(4.8)

for all k > h > ko, %pg §p2<p0§pg,to—p5§7'0<Tg§t0—%p5.Let5>O
be determined. Considering the absolute continuity of the Lebesgue integral, we take

H > kg large enough such that

to

/ / (u—H), drdt < epNtP.

0 k(o)

(4.10)
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For m=0,1,..., set

H 1 1 8 1 1
— _ 2 — (= = — 4B~ B
km—2H om” Pm = <2+2m+1>p s Tm = to 2[’ 2m+1p )

and
Im = / (u — k! dzdt.
K(km’l)mﬂ'm)

Since the constant C' in (4.9) is independent of h, k, pg, p2, 7o and 7o, we substitute
the previous data respectively with k.., kmn+1, pPm, Pm+1, Tm and Tp41. Thereby,

we get
N 2m+2 2m+1 -1
e e I

l (4.11)
om+2 (m2)l 9(m+1)
+ P (1+2 )Jm+< fi >Jm}
By taking H > 1, we can simplify (4.11) as follows:
N N_(oml _B_ s
It < CIn 7 {pﬁj,w +2m N } (4.12)

Since (4.10) implies that Jy < epN*+? we can prove by induction for suitable § € (0,1)
that
Jm < 6MepNtP form =0,1,... (4.13)

In fact, assume that (4.13) holds for m. It follows by combining (4.12) with (4.13) that
A s [omB B [omB B
il S CIn ™’ [27” ONFBeNHE + QMG NFE NFP pﬂ] ‘

Since 0 < p < 1 and by letting
eV < o, 2lWE < 1,
we get that
Im+1 < ComtlgpN+h,

By induction, (4.13) holds for all m. As a result, we obtain that

0= lim J, = / (u —2H)! dxdt,
m— o0

K(2H7%p§,to—%pﬂ)

i.e.
ess sup u < 2H.
8
K(3pa)x(to—3p%t0)

Hence, we proved that w is locally bounded above in Q7. Moreover, by substituting —u
for u, we obtain similarly that u is locally bounded below. The proof of Theorem 2.8
is completed.



Regularity and existence of solutions to parabolic equations. . . 783

5. GLOBAL BOUNDEDNESS OF THE SOLUTION

We begin our proof by assuming that g € C1([0,T]; W1>°(Q)) and F fulfills (2.9).
Afterward, we consider the following problem

vy — divA(z, t, Vo)

= —div (|F|P@Y72F + a(z,t)|F|9@Y72F) — 0,9 in Qr,

v=0 on 90 x (0,7),
v=g(0)—g on € x {0},

(5.1)

where

Az, t, Vo) = A(z,t, V(g +v)).
By Lemma 3.1, there exists a solution
v e L0, T; L2(Q)) n WE™D (Qr) n W™ (Qr)

with v, € W@ (Q7)" of equation (5.1) in the sense of Definition 2.5. Thereafter,
we introduce the following

ko ifv>k,
v = min{|v|, k}sign(v) = Sv i |v| <k, (5.2)
—k ifv < —k.
For every m € N, the function vim_l can be taken for test function in the weak

formulation of (5.1) such that we have the following estimate

¢ iyt
//vtvim_l dxdr = /vvim_l dz - //v@t(vim_l) dxdr
0 Q =0 00

¢
T=t
v da - //vkﬁt(vzm_l) dxdr (5.3)
=0
0 Q

)

W

T=t

= om 1
o™t da - [ da
7=0 2m

a 7=0
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Next, we have

t
// x,t, Vug).V im_l dxdr
0

t
= (2m —1) //vi(mfl)fl(x,t,Vvk)Vvk dxdr
0 Q

=(2m — 1){//v,§<’”‘1>A(x,t, V(v + 9))V(vk + g) dadr

t
- //vi(’”‘”A(m,t,V(vk +9))Vyg d:ch}

Therefore, by using (1.2)—(1.4), the assumption on g, Young’s and Holder’s inequalities
we get the following

t

I > C1{//|V(vk +g)|p(z’t)vi(m71) dxdr

0 Q
t

+ a; // IV (vg + g)[ 1021 dxdr},

0 O
and
{//IV v + 9)[PED 12|V dadr
0 Q
t
+Oé1//IV(vk+g)|q(x’t)_1v,z(m71)wg| dxdr} = Co{l3 + I},
0 Q
with

\/\
o\

/|V (vx + 9)[P® Do Z(m D dxdr + C(e //|Vg|p(5” t)v M=) Grdr
) 0

2(m—1)
t 2m

/|V v + g)|P@ o 2(m 2 dxdr + C(e )/|Q " /vim dx dr,
0 0 Q

IN

\

3
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and

2(m—1)
t 2m

t
< 6//|V(vk+g)|q(m’t)vi(m_l) dsz+O(5)/|Q|# /vim dz dr.
0O 0 Q

Thereafter, since |vg| < k, and by using Holder’s inequality and (2.9) we get the
following estimate

t
// {—div (\F\p(z’t)*QF + a(z, t)|F|q(z’t)72F> - 8tg} v dadt
0

Q
t
2(m—1)
< [ [ sty + fougly 2oy dac (5.4)
0 Q
2(m—1)

t 2m
< c/m\# /vim dz dr.
0 Q

Combining (5.3)—(5.4) into the weak formulation of (5.1), we arrive at
¢

2m—1 ~ 2m -1 2m
VU, dz — 5 | Yk dz
7=0

Q - Q
t t
+ [ 1V P awar [ 9 g0 drie g
Q 0 Q

T=t

7=0

0
2(m—1)
Zm

t
< C’/|Q|% /v,%m dx dr.
0 Q

Next, by introducing the function y,,(t) = |[vg|/z2m(q)(t) and using the fact that
v > 2™ and v(-, 0)vi™ (-, 0) = v?¥"(-,0), we obtain from (5.5) the following

k

1 1 /
T a2Mp) < T 2m + 2(m—1) . )
S0 < Sy )+ CllE [ D) dr (56)

0
Let z(t) be the solution of the following equation

1 1 /

- .2m — _— .2m % 2(m—1)

5 ? (t) 5 ? (0) + C19| /z (1) dr, (5.7)

0
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with 2(0) = |[vol/z2m @) + &, where [[vo||z2m (@) = [[v(,0)]|z2m ) and § > 0 is an
arbitrary positive constant. The function z(¢) can be constructed as the solution of
the Cauchy problem for the ODE obtained from (5.7) by means of differentiation

'(t) = ClQ|m 2zt ¢
r<>c|z, >0, 58)

2(0) = [[vol|2m () + 9.

This equation can be explicitly integrated and the solution of (5.8) has the form

2

2(8) = /201005t + (Jvoll o (o) + )

By the choice of the initial data y,,(0) — z(0) = —d < 0, which yields y,,,(t) < y(t) for
all t > 0. Indeed, if the assertion is false then by the monotonicity property of z(t)
and the given initial data, we have that

t* =sup{t > 0: yn(t) < z(t)} < +oo.

Since 0 <y (t) < k|Q| 7, it follows from (5.6) that t* > 0. Therefore, by subtracting
(5.6) from (5.7), we find that

+*

_ 1 2m k) L 2m(gk L 2(m—1) _2(m—1)
0= 5 () = 2#m@)) <l [ (20 0(r) - 200 )ar
0 <0
1 m m
+ 5 27(0) — 2°™(0)) <0,

<0

which is impossible. Thus, y,,(t) < z(t) for every m and §. Letting m — oo we conclude
that for every § > 0

2
loellw(or () < /201902 + (eolleioy +0)” = C() < C(T).
Next, let us choose k > C(T') + 1. Under this choice of k, we get
vp = min{|v|, k}sign(v) = v.

Hence, since u = v + ¢ is the solution of (1.1) and g € L*°(f2) we conclude the proof
of Theorem 2.9.
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