Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This study aimed to develop Fe/Al multilayered metallic/intermetallic composites produced by hot pressing under an air atmosphere. Analyses were carried out on the composite plates made up of alternatively situated sheets of AA1050 aluminum alloy and DN04 low carbon steel, which were annealed at 903 K for 2, 5, and 10 h. Annealing was performed to obtain reaction layers of distinct thickness. The samples were examined using X-Ray diffraction and scanning and transmission electron microscope equipped with an energy-dispersive X-Ray spectrometer. To correlate the structural changes with mechanical properties, microhardness measurements in near-the-interface layers were performed. All the reaction layers grew with parabolic kinetics with η-Al5Fe2 intermetallic phase as the dominant component. After annealing for 5 and 10 hours, a thin sublayer of θ-Al13Fe4 phase was also detected.
Wydawca
Czasopismo
Rocznik
Tom
Strony
137--144
Opis fizyczny
Bibliogr. 24 poz., fot., rys., tab., wykr.
Twórcy
autor
- Institute of Metallurgy and Materials Science, Polish Academy of Sciences, 25 Reymonta Str., 30-059 Krakow, Poland
autor
- Institute of Metallurgy and Materials Science, Polish Academy of Sciences, 25 Reymonta Str., 30-059 Krakow, Poland
autor
- Institute of Metallurgy and Materials Science, Polish Academy of Sciences, 25 Reymonta Str., 30-059 Krakow, Poland
autor
- Institute of Metallurgy and Materials Science, Polish Academy of Sciences, 25 Reymonta Str., 30-059 Krakow, Poland
autor
- Institute of Metallurgy and Materials Science, Polish Academy of Sciences, 25 Reymonta Str., 30-059 Krakow, Poland
autor
- Institute of Metallurgy and Materials Science, Polish Academy of Sciences, 25 Reymonta Str., 30-059 Krakow, Poland
autor
- Institute of Metallurgy and Materials Science, Polish Academy of Sciences, 25 Reymonta Str., 30-059 Krakow, Poland
autor
- Institute of Metallurgy and Materials Science, Polish Academy of Sciences, 25 Reymonta Str., 30-059 Krakow, Poland
Bibliografia
- [1] M. Krasnowski, T. Kulik, Nanocrystalline and amorphous Al-Fe alloys containing 60-85% of Al synthesised by mechanical alloying and phase transformations induced by heating of milling products, Mater Chem. Phys. 116, 631-637 (2009). DOI: https://doi.org/10.1016/j.matchemphys.2009.05.003
- [2] M. Krasnowski, T. Kulik, Nanocrystalline Al-Fe intermetallics - lightweightalloys with high hardness, Intermetallics 18, 47-50 (2010). DOI: https://doi.org/10.1016/j.intermet.2009.06.006
- [3] X. Li, A. Scherf, M. Heilmaier, F. Stein, The Al-rich part of the Fe-Al phase diagram, J. Phase Equlib. Diff. 37, 162-173 (2016). DOI: https://doi.org/10.1007/s11669-015-0446-7
- [4] G.H.S.F.L. Carvalho, I. Galvão, R. Mendes, R.M. Leal, A. Loureiro, Explosive welding of aluminium to stainless steel, J. Mater. Process. Tech. 262, 340-349 (2018). DOI: https://doi.org/10.1016/j.jmatprotec.2018.06.042
- [5] G.H.S.F.L. Carvalho, I. Galvão, R. Mendes, R.M. Leal, A. Loureiro, Formation of intermetallic structures at the interface of steel-to-aluminium explosive welds, Mater. Charact. 142, 432-442 (2018). DOI: https://doi.org/10.1016/j.matchar.2018.06.005
- [6] Z. Guo, M. Liu, Z. Bian, M. Liu, J. Li, An Al-7Si alloy/cast iron bimetallic composite with super-high shear strength, J. Mater. Res. Tech. 8 (3), 3126-3136 (2019). DOI: https://doi.org/10.1016/j.jmrt.2017.06.014
- [7] H. Paul, Ł. Maj, M. Prażmowski, A. Gałka, M. Miszczyk, P. Petrzak, Microstructure and mechanical properties of multilayered Al/Ti composites produced by explosive welding, Procedia Manufacturing 15, 1391-1398 (2018). DOI: https://doi.org/10.1016/j.promfg.2018.07.343
- [8] D.M. Fronczek, R. Chulist, Z. Szulc, J. Wojewoda-Budka, Growth kinetics of TiAl3 phase in annealed Al/Ti/Al explosively welded clads, Mater. Lett. 198, 160-163 (2017). DOI: https://doi.org/10.1016/j.matlet.2017.04.025
- [9] Y. Liu, X. Chong, Y. Jiang, R. Zhou, J. Feng, Mechanical properties and electronic structures of Fe-Al intermetallic, Physica B 506, 1-11 (2017). DOI: http://dx.doi.org/10.1016/j.physb.2016.10.032
- [10] M.Z. Khalid, J. Friis, P.H. Ninive, K. Marthinsen, A. Strandlie, Ab-initio study of atomic structure and mechanical behaviour of Al/Fe intermetallic interfaces, Comput. Mater. Sci. 174, 109481 (2020). DOI: https://doi.org/10.1016/j.commatsci.2019.109481
- [11] N.L. Okamoto, J. Okumura, M. Higashi, H. Inui, Crystal structure of η’-Fe3Al8; low-temperature phase of η-Fe2Al5 accompanied by anordered arrangement of Al atoms of full occupancy in the c-axis chain sites, Acta Mater. 129, 290-299 (2017). DOI: http://dx.doi.org/10.1016/j.actamat.2017.02.060
- [12] H. Springer, A. Kostka, J.F. dos Santos, D. Raabe, Influence of intermetallic phases and Kirkendall-porosity on the mechanical properties of joints between steel and aluminium alloys, Mat. Sci. Eng A 528, 4630-4642 (2011). DOI: https://doi.org/10.1016/j.msea.2011.02.057
- [13] P. Clérico, X. Mininger, L. Prévond, T. Baudin, A.L. Helbert, Compromise between magnetic shielding and mechanical strength of thin Al/Steel/Al sandwiches produced by cold roll bonding: Experimental and numerical approaches, J. Alloys Comp. 798, 67-81 (2019). DOI: https://doi.org/10.1016/j.jallcom.2019.05.243
- [14] F. Kong, Y. Chen, D. Zhang, Interfacial microstructure and shear strength of Ti-6Al-4V/TiAl laminate composite sheet fabricated by hot packed rolling, Mater. Design 32, 3167-3172 (2011). DOI: https://doi.org/10.1016/j.matdes.2011.02.052
- [15] H. Xiao, Z. Qi, C. Yu, C. Xu, Preparation and properties for Ti/Al clad plater generated by differential temperature rolling, J. Mater. Process. Tech. 249, 285-290 (2017). DOI: https://doi.org/10.1016/j.jmatprotec.2017.06.013
- [16] M. Yang, H. Ma, Z. Shen, D. Chen, Y. Deng, Microstructure and mechanical properties of Al-Fe meshing bonding interfaces manufactured by explosive welding, Trans. Nonferrous Met. Soc. China 29, 680-691 (2019). DOI: https://doi.org/10.1016/S1003-6326(19)64978-2
- [17] M. Fan, Z. Luo, Z. Fu, X. Guo, J. Tao, Vacuum hot pressing and fatigue behaviors of Ti/Al laminate composites, Vacuum 154, 101-109 (2018). DOI: https://doi.org/10.1016/j.vacuum.2018.04.047
- [18] H. Springer, A. Kostka, E.J. Payton, D. Raabe, A. Kaysser-Pyzalla, G. Eggler, On the formation and growth of intermetallic phases during interdiffusion between low-carbon steel and aluminium alloys, Acta Mater. 59, 1586-1600 (2011). DOI: https://doi.org/10.1016/j.actamat.2010.11.023
- [19] H. Springer, A. Szczepaniak, D. Raabe, On the role of zinc on the formation and growth of intermetallic phases during interdiffusion between steel and aluminium alloys, Acta Mater. 96, 203-211 (2015). DOI: https://doi.org/10.1016/j.actamat.2015.06.028
- [20] J. Yang, Y.L. Li, H. Zhang, W. Guo, Y. Zhou, Control of interfacial intermetallic compounds in Fe-Al joining by Zn addition, Mat. Sci. Eng. A 645, 323-327 (2015). DOI: https://doi.org/10.1016/j.msea.2015.08.036
- [21] C. Tan, C. Zang, H. Xia, X. Zhao, K. Zhang, S. Meng, B. Chen, X. Song, L. Li, Influence of Al additions in Zn-based filler metals on laser welding-brazing of Al/steel, J. Manuf. Process. 34, 251-263 (2018). DOI: https://doi.org/10.1016/j.jmapro.2018.06.008
- [22] W. Kowalski, H. Paul, P. Petrzak, Ł. Maj, I. Mania, M. Faryna, Influence of hot pressing on the microstructure of multi-layered Ti/Al composites, Arch. Metall. Mater. 66 4, 1149-1156 (2021). DOI: https://doi.org/10.24425/amm.2021.136435
- [23] W. Gąsior, A. Debski, Z. Moser, Formation enthalpy of intermetallic phases from Al-Fe system measured with solution calorimetric method, Intermetallics 24, 99-105 (2012). DOI: https://doi.org/10.1016/j.intermet.2012.02.001
- [24] R.T. Li, Z.L. Dong, K.A. Khor, Al-Cr-Fe quasicrystals as novel reinforcements in Ti based composites consolidated using high pressure spark plasma sintering, Mater. Design 102, 255-263 (2016). DOI: https://doi.org/10.1016/j.matdes.2016.04.040
Uwagi
1. The work was supported by The National Centre for Research and Development (NCBiR) in the frame of TECHMATSTRATEG2/412341/8/ NCBR/2019 (EMuLiReMat).
2. Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-85fa0779-76e9-4296-a4fa-49e495b54a2e