PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Shallow water communication with an object buried in bottom sediments

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Underwater acoustic communications (UAC) in shallow water applications is a very difficult task. This task becomes even more difficult when there is a need to ensure reliable communication with an object buried in bottom sediments. The article presents a simulation of an acoustic transmission channel in conditions of strong multi-path propagation to an object buried in bottom sediments. The impulse response method was used, supported by a technique derived from the ray tracing image source method. Simulation results are presented for both narrowband and broadband signals with LFM frequency modulation. Based on the simulation, the conditions that should be met by the transmission signals to ensure correct communication were determined. Examples of data transmission to an object buried in bottom sediments in a simulated shallow channel with multi-path propagation were also presented.
Twórcy
  • Gdańsk University of Technology
  • Gdańsk University of Technology
  • Gdańsk University of Technology
Bibliografia
  • [1] K. Zachariasz, J. Schmidt, R. Salamon., “Code signals transmission using MFSK modulation in shallow waters”, Hydroacoustics, Vol.4, pp. 261-264, 2001.
  • [2] J. Schmidt, K. Zachariasz, R. Salamon., “Underwater communication system for shallow water using modified MFSK modulation”, Hydroacoustics, vol. 8, pp. 179-184, 2005.
  • [3] J. Schmidt., “Reliable underwater communication system for shallow coastal waters”, Hydroacoustics, vol. 17, pp. 171-178, 2014.
  • [4] J. Schmidt, I. Kochańska, A. Schmidt, “Measurement of impulse response of shallow water communication channel by correlation method”, Hydroacoustics, vol. 20, pp. 149-158, 2017.
  • [5] I. Kochańska, J. H. Schmidt, J. Marszal, “Shallow water experiment of OFDM underwater acoustic communications”, Archives of Acoustics, vol. 45, no. 1, 11-18, 2020, https://doi.org/10.24425/aoa.2019.129737.
  • [6] I. Kochańska, “Reliable OFDM Data Transmission with Pilot Tones and Error-Correction Coding in Shallow Underwater Acoustic Channel”, Applied Sciences, vol. 10, no. 6, pp. 2173, 2020. https://doi.org/10.3390/app10062173.
  • [7] I. Kochańska, “A new direct-sequence spread spectrum signal detection method for underwater acoustic communications in shallow-water channel”, Vibrations in Physical Systems, vol. 32, no. 1, pp. 2021106, 2021. https://doi.org/10.21008/j.0860-6897.2021.1.06
  • [8] I. Kochańska, “Erratum: A new direct-sequence spread spectrum signal detection method for underwater acoustic communications in shallow-water channel”, Vibrations in Physical Systems, vol. 33, no. 1, pp. 2022114, 2022. https://doi.org/10.21008/j.0860-6897.2022.1.14.
  • [9] J. Schmidt, A. Schmidt., “Synchronization system for underwater acoustic communications using in shallow waters”, Vibrations in Physical Systems, vol. 34, no. 1, pp. 2023102, 2023, https://doi.org/10.21008/j.0860-6897.2023.1.02.
  • [10] J. H. Schmidt, A. M. Schmidt, “Wake-up receiver for underwater acoustic communication using in shallow water”, Sensors, vol. 23, no. 4, 2088, 2023, https://doi.org/10.3390/s23042088.
  • [11] A. B. Wood, D. E. Weston, “The propagation of sound in mud, Acustica, vol. 14, pp. 156 - 162,1964. [12] R. D. Stoll, G. M. Bryan, “Wave Attenuation in Saturated Sediments”, J. Acoust. Soc. Am., vol. 47, no. 5, part 2, pp. 1440-1447, 1970. https://doi.org/10.1121/1.1912054.
  • [13] R. D. Stoll, “Theoretical aspects of sound transmission in sediments”, J. Acoust. Soc. Am., vol. 68, no. 5, pp. 1341-1350, 1980. https://doi.org/10.1121/1.385101.
  • [14] R. D. Stoll, “Marine sediment acoustics”, J. Acoust. Soc. Am., vol. 77, no. 5, pp. 1789-1799, 1985. https://doi.org/10.1121/1.391928.
  • [15] A. C. Kibblewhite, “Attenuation of sound in marine sediments: A review with emphasis on new low-frequency data”, J. Acoust. Soc. Am., vol. 86, no. 2, pp. 716-738, 1989. https://doi.org/10.1121/1.398195.
  • [16] M. J. Buckingham, “Theory of acoustic attenuation, dispersion, and pulse propagation in unconsolidated granual materials including marine sediments”, J. Acoust. Soc. Am., vol.102, no. 5, pp. 2579-2596, 1997. https://doi.org/10.1121/1.420313.
  • [17] A. Turgut, T. Yamamoto, “In Situ measurements of velocity dispersion and attenuation in New Jersey Shelf sediments”, J. Acoust. Soc. Am., vol. 124, no.3, pp. EL122-EL127, 2008. https://doi.org/10.1121/1.2961404.
  • [18] K. M. Lee, M. S. Ballard, A. R. McNeese, T. G. Muir, P. S. Wilson, “In situ measurements of sediment acoustic properties in Currituck Sound and comparison models”, J. Acoust. Soc. Am., vol. 140, no. 5, pp. 3593-3606, 2016. https://doi.org/10.1121/1.4966118.
  • [19] M. S. Ballard, “The acoustics of marine sediments”, Acoustics Today, vol. 13, no. 3, pp. 11-18, 2017.
  • [20] C. W. Holland, S. E. Dosso, “On compressional wave attenuation in muddy marine sediments”, J. Acoust. Soc. Am., vol. 149, no. 5, pp. 3674-3687. https://doi.org/10.1121/10.0005003.
  • [21] M. Stojanovic, J. Preisig, “Underwater acoustic communication channels: prpagation models and statistical characterisation”, IEEE Communications Magazine, January 2009, pp. 84-89, 2009. https://doi.org/10.1109/MCOM.2009.4752682.
  • [22] T. C. Yang, “Properties of underwater acoustic communication channels in shallow water”, J. Acoust. Soc. Am., vol. 131, no. 1, pp. 129-145, 2012. https://doi.org/10.1121/1.3664053.
  • [23] P. A. van Walree, “Propagation and scattering effects in underwater acoustic communication channels”, IEEE J. Ocean Eng., vol. 38, no. 4, pp. 614-631, 2013.
  • [24] F. John, M. Cimdins, H. Hellbrück, “Underwater ultrasonic multipath diffraction model for short range communication and sensing applications”, IEEE Sensors Journal, vol. 21, no. 20, pp. 22934-22943, 2021.
  • [25] J. B. Allen, D. A. Berkley, “Image method for efficiently simulating small-room acoustics”. J. Acoust. Soc. Am., vol. 65, no. 4, pp. 943-950, 1979. https://doi.org/10.1121/1.382599.
  • [26] A. Wareing, M. Hodgson, “Beam-tracing model for predicting sound fields in rooms with multilayer bounding surfaces, J. Acoust. Soc. Am., vol. 118, no. 4, pp. 2321-2331, 2005. https://doi.org/10.1121/1.2011152.
  • [27] G. Marbjerg, J. Brunskog, C. H. Jeong, E. Nilsson, “Development and validation of a combined phased acoustical radiosity and image source model for predicting sound fields in rooms”. J. Acoust. Soc. Am., vol. 138, no.3, pp. 1457-1468, 2015. https://doi.org/10.1121/1.4928297.
Uwagi
1. Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
2. The paper was written as a result of the research project No. DOB-SZAFIR/01/B/017/04/2021 financed by The National Centre for Research and Development of the Republic of Poland.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-85f9982c-2914-497c-ad17-0dcac7ab71f6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.