PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The organisation of control over non-centralized water supply under the risk of groundwater dynamics disturbance in karst areas

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The use of non-centralised water supply in remote settlements is currently the only possible option. Monitoring the water quality of such supply sources is a complicated task in such areas, especially when there are active karst processes and difficult groundwater conditions. The application of deterministic analytical models of water supply under the risk of disturbance to groundwater dynamics is not efficient. Significant quantitative and even qualitative changes in groundwater conditions may take place between the calculated points, and the underestimation of these changes in expectation-driven computation models may result in serious geoecological issues. This research studied and justifies the use of adaptive dynamic hydrogeological control in an area of non-centralised water supply based on the identification of key zones of geodynamic karst monitoring and the electrical express-monitoring of water resources. The identification of key zones is based on an integrated analysis of available groundwater information that describes changes in groundwater hydrodynamic conditions at the time of the karst forecast. The development of karst-suffusion processes is accompanied by more intense dynamic changes in local areas of geologic environment compared to the general variation in intensity. Information about the occurrence of destructive groundwater processes by means of selective geodynamic monitoring may thus be obtained much earlier than with environmental geodynamics monitoring as a whole. The experimental hydrogeological control of an area of non-centralised water supply was conducted on the right bank of the Oka River in Nizhny Novgorod region, a locality with an active manifestation of karst processes. Structure and algorithms of space-time processing of hydrogeological control data developed by authors have been used. The approach based on multifrequency vertical electrical sounding (MFVES) method has shown good correspondence with direct borehole observation when measuring depth of the first aquifer. Zones of unsafe water use have been revealed. The results demonstrated the effectiveness of the proposed method and the need for further regular observations of destructive groundwater processes by means of selective hydrogeodynamic monitoring.
Wydawca
Rocznik
Tom
Strony
113--124
Opis fizyczny
Bibliogr. 34 poz., fot., rys., tab.
Twórcy
  • Belgorod National Research University, Department of Information and Robototechnic Systems, 85 Pobedy St., 308015 Belgorod, Russia
  • Vladimir State University named after A. G. and N. G. Stoletovs, Department of Management and Control in Technical Systems, Vladimir, Russia
  • Vladimir State University named after A. G. and N. G. Stoletovs, Department of Management and Control in Technical Systems, Vladimir, Russia
  • Belgorod National Research University, Department of Information and Robototechnic Systems, 85 Pobedy St., 308015 Belgorod, Russia
  • Belgorod National Research University, Department of Information and Robototechnic Systems, 85 Pobedy St., 308015 Belgorod, Russia
Bibliografia
  • ABALAKOV A.D. 2007. Ekologicheskaya geologiya: Uchebnoye posobiye [Environmental geology: A textbook]. Irkutsk. Izdvo Irkutskogo gosudarstvennogo universiteta. ISBN 978-5-9624-0229-1 pp. 267.
  • ABANINA E.N., ZENYUKOVA O.V. 2006. Sukhova EA Kommentariy k Federalnomu zakonu ot 10 yanvarya 2002 g. no. 7-FZ “Ob okhrane okruzhayushchey sredy” [The comment on the Federal Law of January 10, 2002 No. 7-FL “On environmental protection”]. Moscow, Os-89 Publ.
  • BRENČIČ M., PRESTOR J., KOMPARE B., MATOZ H., KRAJNC S. 2009. Integrated approach to delineation of drinking water protection zones. Geologija. Vol. 52 (2) p. 175–182. DOI 10.5474/geologija.2009.017.
  • DEMIN A.P. 2000. Trends in water supply and water conservation in Russia. Water Resources. Vol. 27. Iss. 6 p. 670–687.
  • DOERFLIGER N., JEANNIN P.-Y., ZWAHLEN F. 1999. Water vulnerability assessment in karst environments: A new method of defining protection areas using a multiattribute approach and GIS tools (EPIK method). Environmental Geology. Vol. 39. Iss. 2 p. 165–176.
  • DOROFEEV N., KUZICHKIN O., EREMENKO V. 2016. The method of selection of key objects and the construction of forecast function of the destructive geodynamic processes. International Multidisciplinary Scientific GeoConference: SGEM 1 p. 883–890.
  • DUBLYANSKY V.N., DUBLYANSKY Y.V. 2000. 3.6. Role of condensation in Karst hydrogeology and speleogenesis. In: Speleogenesis: Evolution of Karst aquifers. Eds. A.B. Klimchouk, D.C. Ford, A.N. Palmer, W. Dreybrodt. Huntsville, Alabama, USA. National Speleological Society p. 100–112.
  • FORD D.C., WILLIAMS P.W. 1989. Karst geomorphology and hydrology. London. Unwin Hyman. ISBN 9780045511068 pp. 608.
  • GOLDSCHEIDER N., KLUTE M., STURM S., HÖTZL H. 2000. The PI method – a GIS-based approach to mapping groundwater vulnerability with special consideration of Karst aquifers. Zeitschrift für angewandte Geologie. Vol. 46. Iss. 3 p. 157–166.
  • GOST 17.1.3.07–82 Okhrana prirody (SSOP). Gidrosfera. Pravila kontrolya kachestva vody vodoemov i vodotokov [Hydrosphere. Rules for water quality control of water objects and waterways]. Group T58. Established 1983-01-01.
  • GRECHENEVA A.V., DOROFEEV N.V., KUZICHKIN O.R., EREMENKO V.T. 2016. Organization of geodynamic monitoring on the basis of the geoelectric method. European Association of Geoscientists & Engineers. Conference Proceedings, Geo-Baikal, August 2016 p. 1–5.
  • KHASANOVA R.F., SUYUNDUKOV Y.T., SEMENOVA I.N., RAFIKOVA Y.S. 2019. Kachestvo pit'yevoy vody v gornorudnych rajonakh [Quality of drinking water in mining areas]. Vestnik Nizhnevartovskogo gosudarstvennogo universiteta. No. 2 p. 104–109.
  • KLIMCHOUK A., TOKAREV S. 2014. Problemy okhrany istochnikov pit'yevogo vodosnabzheniya v usloviyakh eksponirovannogo karsta [The problems of groundwater source protection for drinking water supply under conditions of exposed karst]. Ukrayinskyy heohrafichnyy zhurnal. Vol. 1 p. 43–52. DOI 10.15407/ugz2014.01.043.
  • MESTER T., SZABÓ G., BESSENYEI É., KARANCSI G., BARKÓCZI N., BALLA D. 2017. The effects of uninsulated sewage tanks on groundwater. A case study in an eastern Hungarian settlement. Journal of Water and Land Development. Vol. 33 p. 123–129. DOI 10.1515/jwld-2017-0027.
  • NOLLET L.M., DE GELDER L.S. 2000. Handbook of water analysis. CRC Press. ISBN 0-8247-8433-2 pp. 921. DOI 10.1201/ B15314.
  • OREKHOV A.A. 2013. Issledovanye i razrabotka programmno-apparatnogo kompleksa dlya ekologicheskogo monitoringa poverhnostnykh i podzemnyh vod na baze metoda geoelektricheskogo kontrolya [Research and development of hardware and software system for environmental monitoring of surface water and groundwater based on the method of geoelectric control]. Uchenye zapiski Rossijskogo gosudarstvennogo gidrometeorologicheskogo universiteta. No. 28 p. 72–77.
  • OVODOV V.S. 2004. Sel'skokhozyaystvennoye vodosnabzheniye i navodneniye. Uchebnoye posobiye [The agricultural water supply and flooding. The teaching aid]. Uchebnoe posobiye. Moscow. Kolos. ISSN 2222-5285 pp. 480.
  • PECHERKIN A.I. 1986. Geodinamika sul'fatnogo karsta [Geodynamics of sulphate karst]. Irkutsk, Russia. Izdatel’stvo Irkutskogo gosudarstvennogo universiteta. ISBN 5-7944-0443-4 pp. 169.
  • RAVBAR N., GOLDSCHEIDER N. 2009. Comparative application of four methods of groundwater vulnerability mapping in a Slovene karst catchment. Hydrogeology Journal. Vol. 17. Iss. 3 p. 725–733. DOI 10.1007/978-3-642-12486-0_51.
  • ROMANOV R.V., KUZICHKIN O.R., DOROFEEV N.V., GRECHENEVA A.V. 2020. The assessment of the influence of the hydrogeological regime of rivers on the conditions of the decentralized water supply in karst areas. IOP Conference Series: Earth and Environmental Science. Vol. 459, 042086. DOI 10.1088/1755-1315/459/4/042086.
  • ROMANOV R.V., KUZICHKIN O.R., TSAPLEV A.V. 2015. Geoecological control of the aquifer in the decentralized water supply systems of the local level. 2015 IEEE 8th International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS). IEEE p. 42–46. DOI 10.1109/IDAACS.2015. 7340698.
  • SASHOURIN A., PANZHIN A., KONOVALOVA J., RUCHKIN V. 2018. The role of modern geodynamic movements in the formation of geomechanical problems in subsoil use. P. 02010. E3S Web of Conferences. EDP Sciences. DOI 10.1051/e3sconf/ 20185602010.
  • SHARAPOV R.V., KUZICHKIN O.R. 2013. Monitoring of karst-suffusion formation in area of nuclear power plant. 2013 IEEE 7th International Conference on Intelligent Data Acquisition and Advanced Computing Systems (IDAACS). Berlin, Germany. 12–14.09.2013 p. 810–813.
  • SHARAPOV R.V., KUZICHKIN O.R. 2014. Geodynamic monitoring in area of nuclear power plant. Applied Mechanics and Mate-rials. Vol. 492 p. 556–560.
  • SNIP 1999. Inzhenernye izyskaniya, proektirovaniye, stroitel'stvo i ekspluataciya zdanij i sooruzhenij v karstovykh rajonakh Nizhegorodskoj oblasti TSN 22-308-98 NN [Building codes and regulations: Engineering surveys, design, construction and operation of buildings and structures in the karst areas of the Nizhny Novgorod region] [online]. Nizhny Novgorod. [Access 5.05.2020]. Available at: https://files.stroyinf.ru/Data1/41/41752/
  • SOMOV M.A., ZHURBA M.G. 2008. Vodosnabzhenie. Sistemy vodozabora, snabzheniya i raspredeleniya vody [Water supply. Systems of water withdrawal, supply and distribution]. Moscow. Izdatel'stvo Associacii stroitel'nykh vuzov. ISBN 978-5-93093-565-3 pp. 260.
  • STEVANOVIC Z., DRAGISIC V. 1998. An example of identifying karst groundwater flow. Environmental Geology. Vol. 35. Iss. 4 p. 241–244.
  • TOLMACHEV V.V. 1986. Inzhenerno-stroitel'noye osvoeniye zakarstovannykh territorij [Engineering and building development of karst territories]. Moscow. Stroyizdat. ISBN 5-247-01508-8 pp. 176.
  • TOLMACHEV V.V., LEONENKO M.V. 2005. Classification of karstic terrains based on sinkhole risk. Soil Mechanics and Foundation Engineering. Vol. 42. Iss. 2 p. 52–55. DOI 10.1007/s11204-005-0023-x.
  • VÍAS J.M., ANDREO B., PERLES M.J., CARRASCO F., VADILLO I., JIMENEZ P. 2006. Proposed method for groundwater vulnerability mapping in carbonate (karstic) aquifers: The COP method. Hydrogeology Journal. Vol. 14 (6) p. 912–925. DOI 10.1007/s10040-006-0023-6.
  • WORTHINGTON S.H., FORD D.C., BEDDOWS P.A. 2001. Porosity and permeability enhancement in unconfined carbonate aquifers as a result of dissolution. SPELEO Brazil 2001 – 13th International Congress of Speleology p. 463–472.
  • Zakon RF “O nedrah” ot 21.02.1992 N 2395-1 [Law of the Russian Federation “on subsoil”] [online]. [Access 21.02.1992]. Available at: http://www.consultant.ru/document/cons_doc_LAW_343/
  • ZEKTSER I.S., KARIMOVA O.A., BUJUOLI J., BUCCI M. 2004. Regional estimation of fresh groundwater vulnerability: Methodological aspects and practical applications. Water Resources. Vol. 31. Iss. 6 p. 595–600. DOI 10.1023/B:WARE. 0000046896.98274.07.
  • ZWAHLEN F. 2003. Vulnerability and risk mapping for the protection of carbonate (karst) aquifers. Luxemburg. Office for Official Publications of the European Communities. ISBN 92-894-6416-X pp. 297.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-85f2c2e1-d88c-4bf6-bdb8-2fd8f647d6fb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.