PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Exploring the functions of Al2O3 in the transition of BaAl2SiO8 precipitated from CaO-BaO-Al2O3-B2O3-SiO2 sealing glass for IT-SOFCs

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Badanie roli Al2O3 w przemianie BaAl2SiO8 wytrąconego ze szkła uszczelniającego CaO-BaO-Al2O3-B2O3-SiO2 przeznaczonego do IT-SOFC
Języki publikacji
EN
Abstrakty
EN
CaO-BaO-Al2O3-B2O3-SiO2 (CBABS) glasses are the promising commercialized sealing materials for intermediate temperature solid oxide fuel cells (IT-SOFCs). Nevertheless, during the high-temperature operation, the behaviour of hexagonal BaAl2Si2O8 phase easily transformed into the monoclinic BaAl2Si2O8 phase would obviously decrease the thermal expansion coefficient of CBABS glasses, and then to form the serious cracks along the interface of bonded materials. Herein, in terms of the viscosity of CBABS glasses at the operating temperature, we studied the effect of Al2O3 on the transformation of BaAl2Si2O8 crystal form. The results showed that the CBABS glass with higher Al2O3 content presented the higher viscosity and crystallization activation energy, which could effectively prevent the excessive silica precipitation to inhibit the transformation of the BaAl2Si2O8 crystal from hexagonal phase to monocline phase. The inhibition effect of BaAl2Si2O8 crystal transformation effectively suppressed the decrease of the expansion coefficient of the glasses during the heat treatment at 973 K for 100 h, and thus to remarkably enhance the thermal stability of CBABS glasses, which would be very beneficial for IT-SOFCs in the future practical applications.
PL
Szkła CaO-BaO-Al2O3-B2O3-SiO2 (CBABS) to obiecujące, komercyjnie dostępne materiały uszczelniające do średniotemperaturowych stałotlenkowych ogniw paliwowych (IT-SOFC). Niemniej jednak podczas działania w wysokiej temperaturze zachowanie heksagonalnej fazy BaAl2Si2O8, łatwo przemieniającej się w jednoskośną fazę BaAl2Si2O8, spowodowałoby oczywiście zmniejszenie współczynnika rozszerzalności cieplnej szkieł CBABS i w efekcie utworzenie poważnych pęknięć na granicy międzyfazowej łączonych materiałów. Tutaj, w kategoriach lepkości szkieł CBABS w temperaturze roboczej, badaliśmy wpływ Al2O3 na przemianę krystalicznej postaci BaAl2Si2O8. Wyniki pokazały, że szkło CBABS o wyższej zawartości Al2O3 wykazywało wyższą lepkość i energię aktywacji krystalizacji, co mogło skutecznie zapobiegać nadmiernemu wytrącaniu krzemionki, hamując przemianę kryształu BaAl2Si2O8 z fazy heksagonalnej do fazy jednoskośnej. Efekt hamowania przemiany kryształów BaAl2Si2O8 skutecznie tłumił spadek współczynnika rozszerzalności szkieł podczas obróbki cieplnej w temperaturze 973 K przez 100 godzin, a tym samym znacznie poprawiał stabilność termiczną szkieł CBABS, co byłoby bardzo korzystne dla IT-SOFC w przyszłych praktycznych zastosowaniach.
Rocznik
Strony
368--377
Opis fizyczny
Bibliogr. 31 poz., rys., tab.
Twórcy
  • Jiangxi Key Laboratory of Fuel Cell Materials and Devices, Jingdezhen Ceramic Institute, Jingdezhen 333403, China
  • School of Materials Science and Engineering, Jingdezhen Ceramic Institute, Jingdezhen 333403, China
autor
  • Jiangxi Key Laboratory of Fuel Cell Materials and Devices, Jingdezhen Ceramic Institute, Jingdezhen 333403, China
  • School of Materials Science and Engineering, Jingdezhen Ceramic Institute, Jingdezhen 333403, China
autor
  • Jiangxi Key Laboratory of Fuel Cell Materials and Devices, Jingdezhen Ceramic Institute, Jingdezhen 333403, China
  • School of Materials Science and Engineering, Jingdezhen Ceramic Institute, Jingdezhen 333403, China
autor
  • Jiangxi Key Laboratory of Fuel Cell Materials and Devices, Jingdezhen Ceramic Institute, Jingdezhen 333403, China
autor
  • Jiangxi Key Laboratory of Fuel Cell Materials and Devices, Jingdezhen Ceramic Institute, Jingdezhen 333403, China
  • School of Materials Science and Engineering, Jingdezhen Ceramic Institute, Jingdezhen 333403, China
autor
  • Jiangxi Key Laboratory of Fuel Cell Materials and Devices, Jingdezhen Ceramic Institute, Jingdezhen 333403, China
  • School of Materials Science and Engineering, Jingdezhen Ceramic Institute, Jingdezhen 333403, China
autor
  • Jiangxi Key Laboratory of Fuel Cell Materials and Devices, Jingdezhen Ceramic Institute, Jingdezhen 333403, China
  • School of Materials Science and Engineering, Jingdezhen Ceramic Institute, Jingdezhen 333403, China
autor
  • Jiangxi Key Laboratory of Fuel Cell Materials and Devices, Jingdezhen Ceramic Institute, Jingdezhen 333403, China
  • School of Materials Science and Engineering, Jingdezhen Ceramic Institute, Jingdezhen 333403, China
Bibliografia
  • [1] Wang, X. L., Ou, D. R., Zhao, Z., et al.: Stability of SrO-La2O3-Al2O3-SiO2 glass sealants in high-temperature air and steam, Ceram. Int., 42, 6, (2016), 7514-7523.
  • [2] Arora, A., Singh, K., Pandey, O. P.: Thermal, structural and crystallization kinetics of SiO2-BaO-ZnO-B2O3-Al2O3 glass samples as a sealant for SOFC, Int. J. Hydrogen Ener., 36, 22, (2011), 14948-14955.
  • [3] Li, M., Zhao, M., Li, F., et al.: A niobium and tantalum co-doped perovskite cathode for solid oxide fuel cells operating below 500 C, Nature Comm., 2017, 8:13990.
  • [4] Kumar, V., Arora, A., Pandey, O. P., et al.: Studies on thermal and structural properties of glasses as sealants for solid oxide fuel cells, Int. J. Hydrogen Ener., 2008, 33 (1): 434-438.
  • [5] Chou, Y. S., Stevenson, J. W., Hardy, J., et al.: Material degradation during isothermal ageing and thermal cycling of hybrid mica seals under solid oxide fuel cell exposure conditions, J. Power Sources, 157, 1, (2006), 260-270.
  • [6] Lara, C., Pascual, M. J., Duran, A.: Glass-forming ability, sinterability and thermal properties in the systems RO-BaO-SiO2 (R = Mg, Zn), J. Non-Crystall. Solids, 348, (2004), 149-155.
  • [7] Haile, S. M.: Fuel cell materials and components, Acta Materialia, 51, 19, (2003). 5981-6000.
  • [8] Lessing, P. A.: A review of sealing technologies applicable to solid oxide electrolysis cells, J. Mater. Sci., 42, 10, (2007), 3465-3476.
  • [9] Mahapatra, M. K., Lu, K.: Seal glass for solid oxide fuel cells, J. Power Sources, 195, 21, (2010), 7129-7139.
  • [10] Tulyaganov, D. U., Reddy, A. A., Kharton, V. V., et al.: Aluminosilicate-based sealants for SOFCs and other electrochemical applications-a brief review, J. Power Sources, 242, 35, (2013), 486-502.
  • [11] Borhan, A. I., Gromada, M., Nedelcu, G. G., et al.: Influence of additives (CoO, CaO, B2O3) on thermal and dielectric properties of BaO-Al2O3-SiO2 glass-ceramic sealant for OTM applications, Ceram. Int., 42, 8, (2015), 10459-10468.
  • [12] Luo, L. H., Huang, Z. Z., Wu, Y. F., et al.: Sealing Properties of BaO-CaO-Al2O3-B2O3-SiO2 Glass-Ceramics to Large Size Planar IT-SOFC, J. Chin. Ceram. Soc., 42, 1, (2014), 101-107.
  • [13] Lin, S. E., Cheng, Y. R., Wei, W. C. J.: BaO-B2O3-SiO2-Al2O3 sealing glass for intermediate temperature solid oxide fuel cell, J. Non-Crystall. Solids, 358, 2, (2012), 174-181.
  • [14] Bansal, N. P., Gamble, E. A.: Crystallization kinetics of a solid oxide fuel cell seal glass by differential thermal analysis, J. Power Sources, 147, 1-2, (2005), 107-115.
  • [15] Laorodphan, N., Namwong, P., Thiemsorn, W., et al.: A low silica, barium borate glass-ceramic for use as seals in planar SOFCs, J. Non-Crystall. Solids, 355, 1, (2009), 38-44.
  • [16] Ghosh, S., Das Sharma, A. D., Kundu, P.: Development and characterizations of BaO-CaO-Al2O3 -SiO2 glass-ceramic sealants for intermediate temperature solid oxide fuel cell application, J. Non-Crystall. Solids, 354, 34, (2008), 4081-4088.
  • [17] Meinhardt, K. D., Kim, D. S., Chou, Y. S., et al.: Synthesis and properties of a barium aluminosilicate solid oxide fuel cell glass-ceramic sealant, J. Power Sources, 182, 1, (2008), 188-196.
  • [18] Heydari, F., Maghsouoh, A., Hamnabard, Z., et al.: Evaluation on Properties of CaO-BaO-B2O3- Al2O3-SiO2 Glass-Ceramic Sealants for Intermediate Temperature Solid Oxide Fuel Cells, J. Mater. Sci. Techn., 29, 1, (2013), 49-54.
  • [19] Corrai, J. S. M., Verduch, A. G.: The solid solution on of silica in celsian, Trans. J. Br. Ceram. Soc., 77, 2, (1978), 40-44.
  • [20] Lu, Y. F., Du, Y. G., Xiao, J. Y., et al. Effect of ZrO2 content on crystallization and phase transformation of BaO-Al2O3-SiO2 glass-ceramics, J. Chin. Ceram. Soc., 36, 1, (2008), 132-138.
  • [21] Goel, A., Tulyaganov, D. U., Ferrari, A. M., et al.: Structure, sintering, and crystallization kinetics of alkaline-earth aluminosilicate glass-ceramic sealants for solid oxide fuel cells, J. Am. Ceram. Soc., 93, 3, (2010), 830-837.
  • [22] Raut, A. P., Deshpande, V. K.: Effect of SiO2 addition and gamma irradiation on the lithium borate glasses, Mater. Res. Expr., 5, 1, (2018), 015201.
  • [23] Luo, L. H., Lin, Y. C., Huang, Z. Z., et al.: Application of BaO-CaO-Al2O3-B2O3-SiO2 glass- ceramic seals in large size planar IT-SOFC, Ceram. Int., 41, 8, (2015), 9239-9243.
  • [24] Northwest institute of light industry. Glass technology. China light industry press, first edition, 2006, 95-96.
  • [25] Kissinger, H. E.: Reaction kinetics in different thermal analysis, Analyt. Chem., 29, 11, (1957),1702-1706.
  • [26] Wang, R., Lu, Z., Liu, C., et al.: Characteristics of a SiO2-B2O3-Al2O3-BaO-PbO2-ZnO glass- ceramic sealant for SOFCs, J. Alloys Compd., 432, 1-2, (2007), 189-193.
  • [27] Beaman, R. G.: Relation between (apparent) second-order transition temperature and melting point, J. Polymer Sci., 9, 5, (2010), 470-472.
  • [28] Sakka, S., Mackenzie, J. D.: Relation between apparent glass transition temperature and liquids temperature for inorganic glasses, J. Non-Crystall. Solids, 6, 2, (1971), 145-162.
  • [29] Zheng, X., Du, Y., Xiao, J., et al.: Effect of crystallization time on phase transformation and thermal expansion coefficient of BaO-Al2O3-SiO2 glass-ceramics, J. Chinese Ceram. Soc., 36, 1, (20080, 128-131.
  • [30] Mahapatra, M. K., Lu, K.: Thermochemical compatibility of a seal glass with different solid oxide cell components, Int. J. Appl. Ceram. Techn., 7, 1, (2010), 10-21.
  • [31] Peng, L., Zhu, Q. S.: Thermal cycle stability of BaO-B2O3-SiO2 sealing glass, J. Power Sources, , 194, 2, (2009), 880-885.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-85f1d9d5-bedd-440b-b103-8f2f43fc268a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.