PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Application of Real-time fan scheduling in exploration-exploitation to optimize minimum function objectives

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents the application of a task scheduling algorithm called Fan based on artificial intelligence technique such as genetic algorithms for the problem of finding minima in objective functions, where equations are predefined to measure the return on investment. This work combines the methodologies of population exploration and exploitation. Results with good aptitudes are obtained until a better learning based on non-termination conditions is found, until the individual provides a better predisposi¬tion, adhering to the established constraints, exhausting all possible options and satisfying the stopping condition. A real-time task planning algorithm was applied based on consensus techniques. A software tool was developed, and the scheduler called FAN was adapted that contemplates the execution of periodic, aperiodic, and sporadic tasks focused on controlled environments, considering that strict time restrictions are met. In the first phase of the work, it is shown how convergence precipitates to an evolution. This is done in a few iterations. In the second stage, exploitation was improved, giving the algorithm a better performance in convergence and feasibility. As a result, a population was used and iterations were applied with a fan algorithm and better predisposition was obtained, which occurs in asynchronous processes while scheduling in real time.
Rocznik
Strony
43--54
Opis fizyczny
Bibliogr. 19 poz., fig.
Twórcy
  • Universidad Autónoma de Tlaxcala (Facultad de Ciencias Básicas, Ingeniería y Tecnología), México
  • Benemérita Universidad Autónoma de Puebla (Facultad de Ciencias de la Computación), México
  • Universidad Autónoma de Tlaxcala (Facultad de Ciencias Básicas, Ingeniería y Tecnología), México
  • Universidad Autónoma de Tlaxcala (Facultad de Ciencias Básicas, Ingeniería y Tecnología), México
  • Universidad Autónoma de Tlaxcala (Facultad de Ciencias Básicas, Ingeniería y Tecnología), México
Bibliografia
  • [1] Barbosa-Mendez, M. A., Portilla-Flores, E. A., Vega-Alvarado, E., Calva-Yáñez, M. B., & Sepúlveda-Cervantes, G. (2019). A harmony search variant based on a novel synthesized approach for constrained numerical optimization. 2019 16th international conference on electrical engineering, computing science and automatic control (CCE) (pp. 1-6). IEEE. https://doi.org/10.1109/ICEEE.2019.8884555
  • [2] Bertuccelli, L. F., Beckers, N.W. M., & Cummings, M. L. (2010). Developing operator models for UAV search scheduling. In AIAA Guidance, Navigation, and Control Conference, 7863. American Institute of Aeronautics and Astronautics. http://doi.org/10.2514/6.2010-7863
  • [3] Cheng, S. L., & Hwang, C. (2001). Optimal approximation of linear systems by a differential evolution algorithm. IEEE Transactions on Systems, man, and cybernetics-part a: systems and humans, 31(6), 698-707. https://doi.org/10.1109/3468.983425
  • [4] Deb, K. (2000). An efficient constraint handling method for genetic algorithms. Computer methods in applied mechanics and engineering, 186(2-4), 311-338. https://doi.org/10.1016/S0045-7825(99)00389-8
  • [5] Geem, Z. W., Kim, J. H., & Loganathan, G. V. (2001). A new heuristic optimization algorithm: harmony search. Simulation, 76(2), 60-68. https://doi.org/10.1177/003754970107600201
  • [6] Jeong, S., Simeone, O., & Kang, J. (2017). Mobile edge computing via a UAV-mounted cloudlet: Optimization of bit allocation and path planning. IEEE Transactions on Vehicular Technology, 67(3), 2049-2063. https://doi.org/10.1109/TVT.2017.2706308
  • [7] Kim, B., Jung, J., Min, H., & Heo, J. (2021). Energy efficient and real-time remote sensing in AI-powered drone. Mobile Information Systems, 2021, 6650053. https://doi.org/10.1155/2021/6650053
  • [8] Larios-Gómez, M., Carrera, J. M., Anzures-García, M., Aldama-Díaz, A., & Trinidad-García, G. (2019). A Scheduling Algorithm for a Platform in Real Time. In Torre, M., Klapp, J., Gitler, I., & Tchernykh, A. (Eds.) International Conference on Supercomputing in Mexico (vol. 948, pp. 3-10). Springer. https://doi.org/10.1007/978-3-030-10448-1_1
  • [9] Lim, G. J., Kim, S., Cho, J., Gong, Y., & Khodaei, A. (2016). Multi-UAV pre-positioning and routing for power network damage assessment. IEEE Transactions on Smart Grid, 9(4), 3643-3651. https://doi.org/10.1109/TSG.2016.2637408
  • [10] Mirjalili, S., & Lewis, A. (2016). The Whale Optimization Algorithm. Advances in Engineering Software, 95, 51-67. https://doi.org/10.1016/j.advengsoft.2016.01.008
  • [11] Nasiri, J., & Khiyabani, F. M. (2018). A whale optimization algorithm (WOA) approach for clustering. Cogent Mathematics & Statistics, 5(1), 1483565. https://doi.org/10.1080/25742558.2018.1483565
  • [12] Nouiri, M., Bekrar, A., Jemai, A., Niar, S., & Ammari, A. C. (2018). An effective and distributed particle swarm optimization algorithm for flexible job-shop scheduling problem. Journal of Intelligent Manufacturing, 29, 603-615. https://doi.org/10.1007/s10845-015-1039-3
  • [13] Portilla-Flores, E. A., Sánchez-Márquez, Á., Flores-Pulido, L., Vega-Alvarado, E., Yáñez, M. B. C., Aponte-Rodríguez, J. A., & Niño-Suárez, P. A. (2017). Enhancing the harmony search algorithm performance on constrained numerical optimization. IEEE Access, 5, 25759-25780. https://doi.org/10.1109/ACCESS.2017.2771741
  • [14] Ramasubramanian, V., Haas, Z. J., & Sirer, E. G. (2003). SHARP: A hybrid adaptive routing protocol for mobile ad hoc networks. Proceedings of the 4th ACM international symposium on Mobile ad hoc networking & computing (pp. 303-314). ACM Digital Library. https://doi.org/10.1145/778415.778450
  • [15] Saffre, F., Hildmann, H., Karvonen, H., & Lind, T. (2022). Self-swarming for multi-robot systems deployed for situational awareness. In Lipping, T., Linna, P., & Narra, N. (Eds.) New Developments and Environmental Applications of Drones, (pp. 51-72). Springer.
  • [16] Soria, E., Schiano, F., & Floreano, D. (2022). Distributed Predictive Drone Swarms in Cluttered Environments. IEEE Robotics and Automation Letters, 7(1), 73-80. https://doi.org/10.1109/LRA.2021.3118091
  • [17] Sreedhar, M., Reddy, S. A. N., Chakra, S. A., Kumar, T. S., Reddy, S. S., & Kumar, B. V. (2020). A review on advanced optimization algorithms in multidisciplinary applications. In Narasimham, G. S. V. L., Babu, A. V., Reddy, S. S., & Dhanasekaran, R. (Eds). Recent Trends in Mechanical Engineering: Select Proceedings of ICIME 2019 (pp. 745-755). Springer. https://doi.org/10.1007/978-981-15-1124-0_66
  • [18] Storn, R., & Price, K. (1997). Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. Journal of global optimization, 11(4), 341-359. https://doi.org/10.1023/A:1008202821328
  • [19] Wu, Q., & Zhang, R. (2018). Common throughput maximization in UAV-enabled OFDMA systems with delay consideration. IEEE Transactions on Communications, 66(12), 6614-6627. https://doi.org/10.1109/TCOMM.2018.2865922
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-85e578da-7ff6-4410-82bd-11973b0338ad
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.