PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Estimation of power losses in a high-frequency planar transformer using a thermal camera

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents the implementation of a thermal camera for the quantitative estimation of power losses in a high frequency planar transformer (100 kHz/ 5600 VA). The methodology is based on the observation of the transient temperature rise and determination of the power losses by means of curves representing the derivative of temperature as a function of power losses dissipated in the transformer. First, the thermal calibration characteristics had to be obtained from a simple experiment, where power losses are generated by DC current in the ferrite core and windings. Next, experimental investigations focused on the determination of the transformer power losses for a short circuit and no load, with a resistive load and with the rectifier as a load were carried out. Finally, to verify the obtained results, analytical calculations based on Dowell’s and modified Steinmetz’s equations were additionally made, which showed a good convergence. The proposed method is easy to implement and can be used as an alternative to the calorimetric method which is time-consuming and requires a complicated measurement setup.
Rocznik
Strony
613--627
Opis fizyczny
Bibliogr. 25 poz., fig., tab., wz.
Twórcy
autor
  • Institute of Control and Industrial Electronics, Warsaw University of Technology Koszykowa 75, 00-662 Warszawa, Poland
autor
  • Institute of Control and Industrial Electronics, Warsaw University of Technology Koszykowa 75, 00-662 Warszawa, Poland
  • Institute of Control and Industrial Electronics, Warsaw University of Technology Koszykowa 75, 00-662 Warszawa, Poland
autor
  • Institute of Control and Industrial Electronics, Warsaw University of Technology Koszykowa 75, 00-662 Warszawa, Poland
Bibliografia
  • [1] Xiao C., Chen G., Odendaal W., Overview of power loss measurement techniques in power electronics systems, IEEE Transactions on Industrial Application 43(3): 657-664 (2007).
  • [2] Marinov A., Valchev V., Improved methodology for power loss measurements in power electronic switches using digital oscilloscope and MATLAB, Proc. 14th International Power Electronics and Motion Control Conference EPE-PEMC, Ohrid, T7-6-T7-9 (2010).
  • [3] Feix G., Dieckerhoff S., Allmeling J., Schonberger J., Simple methods to calculate IGBT and Diode conduction and switching losses, Proc. European Conf. on Power Electronics and Applications, Barcelona, pp. 1-8 (2009).
  • [4] Biela J., Badstuebner U., Kolar J. W., Impact of power density maximization on efficiency DC-DC converter systems, IEEE Transaction on Power Electronics 24(1): 288-300 (2009).
  • [5] Pavlovsky M., Hero de Haan S. W., Ferreira J. A., Reaching high power density in multikilowatt DC-DC converters with galvanic isolation, IEEE Transaction on Power Electronics 24(3): 603-612 (2009).
  • [6] Josifović I., Popović-Gerber J., Ferreira J. A., Power Sandwich Industrial Drive with SiC JFETs, Proc. 14th European Conference on Power Electronics and Applications EPE, Bermingham, pp. 1-10 (2011).
  • [7] Krismer F., Kolar J. W., Accurate power loss model derivation of a high-current dual active bridge converter for an automotive application, IEEE Transactions on Industrial Electronics 57(3): 881-891 (2010).
  • [8] Krismer F., Kolar J. W., Closed form solution for minimum conduction loss modulation of DAB converters, IEEE Transaction on Power Electronics 27(1): 174-188 (2012).
  • [9] Naayagi R. T., Forsyth A. J., Shuttleworth R., High-Power bidirectional dc-dc converter for aerospace applications, IEEE Transaction on Power Electronics 27(11): 2276-2287 (2012).
  • [10] Li X., Bhat A. K. S., Analysis and design of high-frequency isolated dual-bridge series resonant dc/dc converter, IEEE Transaction on Power Electronics 25(4): 850-862 (2010).
  • [11] Sippola M., Sepponen R. S., Accurate prediction of high-frequency power transformer losses and temperature rise, IEEE Transaction on Power Electronics 17(5): 835-847 (2002).
  • [12] Łyskawiński W., Sujka P., Szeląg W., Barański M., Numerical analysis of hysteresis loss in pulse transformer, Archives of Electrical Engineering 60(2): 187-195 (2011).
  • [13] Stadler A., Gulden C., Improved thermal design of a high frequency power transformer, Proc. 14thEuropean Conference on Power Electronics and Applications, EPE, Bermingham, pp. 1-9 (2011).
  • [14] Conroy D. K., Pierce G. F., Troyk P. R., Measurement techniques for the design of high-frequency SMPS transformers, Proc. IEEE 3rd Annual Power Electron. Conf. APOC'88, New Orleans, pp. 341-351 (1988).
  • [15] Loyau W. V., Bue M. L., Mazaleyrat F., Measurement of magnetic losses by thermal method applied to power ferrites at high level of induction and frequency, Review of Scientific Instruments 80(2) (2009).
  • [16] Kuebrich D., Goettle J., Duerbaum T., Power Loss Measurement based on Transient Temperature Rise, IEEE Applied Power Electronics Conference and Exposition, (APEC), Orlando, Florida, USA, 1797-1801 (2012).
  • [17] Dimitrakakis G. S., Tatakis E. C., Nanakos A. C., A simple calorimetric setup for the accurate measurement of losses in power electronic converters, Proc. 14thEuropean Conf. on Power Electronics and Applications, EPE, Bermingham, pp. 1-9 (2011).
  • [18] Venkatachalam K., Sullivan C. R., Abdallah T., Tacca H., Accurate prediction of ferrite core loss with nonsinusoidal waveforms using only Steinmetz parameters, Proc. of IEEE Workshop on Computers in Power Electronics 36-41 (2002).
  • [19] Dowell P., Effects of eddy currents in transformer windings, Proc. IEE 113(8): 1387-1394 (1966).
  • [20] Pittini R., Zhang Z., Ouyang Z., Andersen M. A. E., Thomson O.C., Analysis of Planar E+I and ER+I transformers for low-voltage high-current DC/DC converters with focus on winding losses and leakage inductance, Proc. 7th International Power Electronics and Motion Control Conference ECCE Asia, Harbin, pp. 488-493 (2012).
  • [21] Villar I., Viscarret U., Etxeberria-Otadui I., Rufer A., Global loss evaluation methods for nonsinusoidally fed medium-frequency power transformers, IEEE Transactions on Industrial Electronics 56(10): 4132-4140 (2009).
  • [22] Nowak M., Grzejszczak P., Zdanowski M., Barlik R., The thermovision method for the assessment of the winding power losses of a high-frequency planar transformer, Przegląd Elektrotechniczny (Electrical Review) 88(11): 60-63 (2012).
  • [23] Hurlley W. G., Wölfe W. H., Breslin J. O., Opitimized transformer design: inclusive of high-frequency effects, IEEE Trans. Pow. Electr. 13(4): 651-659 (1998).
  • [24] Han Y., Eberle W., Liu A., A practical copper loss measurement method for the planar transformer in high-frequency switching converters, IEEE Transactions on Industrial Electronics 54(4): 2276-2287 (2007).
  • [25] Dimitrakakis G. S., Tatakis E. C., Measurement issues related to high frequency sinusoidal excitation of magnetic coils, Proc. 35th Annual IEEE Power Electronics Specialists Conference, PESC, Aachen, pp. 1841-1847 (2004).
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-85e39b23-3af1-4efa-82bb-60b785d2699b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.