PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Partially Melted Zone in Mg-Al Type Alloy After Gas-tungsten Arc Welding

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The gas-tungsten arc (GTA) welding behaviors of the commercial AZ91 magnesium alloy were examined in terms of microstructure characteristics. This study focused on the effects of the GTAW process parameters (like welding current, welding speed and method of additional cooling of the welded samples) on the size of the fusion zone (FZ) and partially melted zone (PMZ). The PMZ morphology of the eutectic regions changed from less to more divorced in the direction from the FZ to the base metal. The largest PMZ was obtained at a low welding speed (3.33 mm/s) and without additional water cooling of the samples.
Rocznik
Strony
18--21
Opis fizyczny
Bibliogr. 11 poz., rys., tab.
Twórcy
  • Institute of Materials Engineering, Czestochowa University of Technology, al. Armii Krajowej 19, 42-200 Czestochowa, Poland
  • Institute of Materials Engineering, Czestochowa University of Technology, al. Armii Krajowej 19, 42-200 Czestochowa, Poland
autor
  • Rzeszow University of Technology, Departament of Casting and Welding, St. W. Pola 2, 35-959 Rzeszow, Poland
Bibliografia
  • [1] Quan, Y. J., Chen, Z. H., Gong, X. J. & Yu, Z. H. (2008). Effects of heat input on microstructure and tensile properties of laser welded magnesium alloy AZ31. Materials Characterization. 59, 1491-1497.
  • [2] Su, S. F., Huang, J. C., Lin, H. K. & Ho, N. J. (2002). Electron Beam Welding Behavior in Mg-Al-Based Alloys. Metall. Mater. Trans. 33A, 1461-1473.
  • [3] Liu, L. & Jiang, J. (2009). The effect of adhesive layer on variable polarity plasma arc weld bonding process of magnesium alloy. Journal of Materials Processing Tech. 209, 2864-2870.
  • [4] Chowdhury, S. M., Chen, D. L., Bhole, S. D., Cao, X., Powidajko, E., Weckman, D. C. & Zhou, Y. (2010). Tensile properties and strain-hardening behavior of double-sided arc welded and friction stir welded AZ31B magnesium alloy, Mat. Sci. Eng. 527(A), 2951-2961.
  • [5] Abderrazak, K., Kriaa, W., Salem, W. B., Mhiri, H., Lepalec, G. & Autic, M. (2009). Numerical and experimental studies of molten pool formation during an interaction of a pulse laser (Nd:YAG) with a magnesium alloy. Opt. Laser Technol. 41, 470-480.
  • [6] Xu, N., Shen, J., Xie, W., Wang, L., Wang, D. & Min D. (2010). Abnormal distribution of microhardness in tungsten inert gas arc butt-welded AZ61 magnesium alloy plates, Mater. Charact. 61, 713-719.
  • [7] Jun, S. & Nan, X. (2012). Effect of preheat on TIG welding of AZ61 magnesium alloy. International Journal of Minerals, Metallurgy and Materials. 19, 360-363.
  • [8] Tashiro, S., Tanaka, M., Nakatani, M., Tani, K. & Furubayashi, M. (2007). Numerical analysis of energy source properties of hollow cathode arc. Surf. Coat. Technol. 201, 5431-5434.
  • [9] Guoli, L. & Shaoqiang, L. Y. (2008). Study on the temperature measurement of AZ31B magnesium alloy in gas tungsten arc welding. Materials Letters. 62, 2282-2284.
  • [10] Munitz, A., Cotler, C., Stern, A. & Kohn, G. (2001). Mechanical properties and microstructure of gas tungsten arc welded magnesium AZ91D plates. Materials Science and Engineering. 302, 68-73.
  • [11] Braszczynska-Malik, K. N. & Mroz, M. (2011). Gas-tungsten arc welding of AZ91 magnesium alloy. Journal of Alloys and Compounds. 509, 9951-9958.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-85e1eca5-62af-4e3f-b211-7c5a266e59ec
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.