PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Q-switched Tm3+-doped multi-ring fibre laser operating at 1.96 μm

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A realisation of a Q-switched Tm³⁺-doped fibre laser operating at 1.96 μm wavelength isreported. The Tm³⁺-doped fibre was fabricated using a novel multi-ring modified chemicalvapour deposition-chelate doping technique (MCVD-CDT) technology. The developed laseremits pulses at a repetition rate of 3 kHz with an energy of 84 μJ and a duration of 272 ns,which corresponds to a peak power of 309 W. The experimental results confirm that thefabricated Tm³⁺-doped multi-ring, large mode area fibre is a promising candidate fordeveloping high-energy Q-switched lasers operating near 2 μm wavelength.
Rocznik
Strony
art. no. e155905
Opis fizyczny
Bibliogr. 27 poz., rys., wykr., tab.
Twórcy
  • 1Department of Telecommunications and Teleinformatics, Wrocław University of Science and Technology, ul. Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
  • Department of Telecommunications and Teleinformatics, Wrocław University of Science and Technology, ul. Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
  • Department of Telecommunications and Teleinformatics, Wrocław University of Science and Technology, ul. Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
  • Military University of Technology, ul. gen. Sylwestra Kaliskiego 2, 00-908 Warszawa, Poland
  • LIMA Photonics GmbH, Weender Landstrasse 3-7, 37075 Goettingen, 37073 Goettingen, Germany
  • Faculty of Electrical Engineering, Bialystok University of Technology, ul. Wiejska 45D, 15-351 Białystok, Poland
  • Faculty of Electrical Engineering, Bialystok University of Technology, ul. Wiejska 45D, 15-351 Białystok, Poland
  • Faculty of Electrical Engineering, Bialystok University of Technology, ul. Wiejska 45D, 15-351 Białystok, Poland
  • Faculty of Geology, Geophysics and Environment Protection, AGH University of Kraków, al. Adama Mickiewicza 30, 30-059 Kraków, Poland
  • Institute of Chemistry, University of Silesia, ul. Szkolna 9, 40-007 Katowice, Poland
  • Faculty of Materials Science and Ceramics, AGH University of Kraków, al. Adama Mickiewicza 30, 30-059 Kraków, Poland
Bibliografia
  • [1] Shi, W., Fang, Q., Zhu, X., Norwood, R. A. & Peyghambarian, N. Fiber lasers and their applications [Invited]. Appl. Opt. 53, 6554–6568 (2014). https://doi.org/10.1364/AO.53.006554
  • [2] Scholle, K., Lamrini, S., Koopmann, P. & Fuhrberg, P. 2 μm Laser Sources and Their Possible Applications. in Frontiers in Guided Wave Optics and Optoelectronics (ed. Pal, B.) (IntechOpen, 2010). https://doi.org/10.5772/39538
  • [3] Sincore, A., Bradford, J. D., Cook, J., Shah, L. & Richardson, M. C. High average power thulium-doped silica fiber lasers: Review of systems and concepts. IEEE J. Sel. Top. Quantum Electron. 24, 1–8 (2018). https://doi.org/10.1109/JSTQE.2017.2775964
  • [4] Jackson, S. D. Cross relaxation and energy transfer upconversion processes relevant to the functioning of 2 μm Tm3+-doped silica fibre lasers. Opt. Commun. 230, 197–203 (2004). https://doi.org/10.1016/j.optcom.2003.11.045
  • [5] Scholle, K., Heumann, E. & Huber, G. Single mode Tm and Tm,Ho:LuAG lasers for LIDAR applications. Laser Phys. Lett. 1, 285 (2004). https://doi.org/10.1002/lapl.200410067
  • [6] Scott, N. J., Cilip, C. M. & Fried, N. M. Thulium fiber laser ablation of urinary stones through small-core optical fibers. IEEE J. Sel. Top. Quantum Electron. 15, 435–440 (2009). https://doi.org/10.1109/JSTQE.2008.2012133
  • [7] Enikeev, D. & Taratkin, M. Thulium fibre laser: Bringing lasers to a whole new level. Eur. Urol. Open Sci. 48, 31–33 (2023). https://doi.org/10.1016/j.euros.2022.07.007
  • [8] Barnes, N. P., Walsh, B. M., Reichle, D. J., DeYoung, R. J. & Jiang, S. Tm:germanate fiber laser: Tuning and Q-switching. Appl. Phys. B 89, 299–304 (2007). https://doi.org/10.1007/s00340-007-2794-4
  • [9] Mingareev, I. et al. Welding of polymers using a 2 μm thulium fiber laser. Opt. Laser Technol. 44, 2095–2099 (2012). https://doi.org/10.1016/j.optlastec.2012.03.020
  • [10] Fuhrberg, P., Ahrens, A., Schkutow, A. & Frick, T. 2.0 μm laser transmission welding. PhotonicsViews 17, 64–68 (2020). https://doi.org/10.1002/phvs.202000013
  • [11] Ghosh, A., Roy, A. S., Chowdhury, S. D., Sen, R. & Pal, A. All-fiber tunable ring laser source near 2 μm designed for CO2 sensing. Sens. Actuators B: Chem. 235, 547–553 (2016). https://doi.org/10.1016/j.snb.2016.05.128
  • [12] Hamperl, J. et al. High energy parametric laser source and frequency-comb-based wavelength reference for CO2 and water vapor DIAL in the 2 μm region: Design and pre-development experimentations. Atmosphere 12, 402 (2021). https://doi.org/10.3390/atmos12030402
  • [13] Eichhorn, M. Development of a high-pulse-energy Qswitched Tm-doped double-clad fluoride fiber laser and its application to the pumping of mid-IR lasers. Opt. Lett. 32, 1056–1058 (2007). https://doi.org/10.1364/OL.32.001056
  • [14] Swiderski, J. & Michalska, M. High-power supercontinuum generation in a ZBLAN fiber with very efficient power distribution toward the mid-infrared. Opt. Lett. 39, 910–913 (2014). https://doi.org/10.1364/OL.39.000910
  • [15] Koltashev, V. V. et al. 150 mW Tb3+ doped chalcogenide glass fiber laser emitting at λ > 5 μm. Opt. Laser Technol. 161, 109233 (2023). https://doi.org/10.1016/j.optlastec.2023.109233
  • [16] Lenski, M. et al. In-band pumped, Qswitched thulium-doped fibre laser system delivering 140 W and 7 mJ pulse energy. Opt. Lett. 49, 4042–4045 (2024). https://doi.org/10.1364/OL.528330
  • [17] Chernysheva, M. et al. High power Qswitched thulium doped fibre laser using carbon nanotube polymer composite saturable absorber. Sci. Rep. 6, 24220 (2016). https://doi.org/10.1038/srep24220
  • [18] Frith, G. P. & Lancaster, D. G. Power scalable and efficient 790-nm pumped Tm3+-doped fiber lasers. Proc. SPIE 6102, 610208 (2006). https://doi.org/10.1117/12.660932
  • [19] Eichhorn, M. & Jackson, S. D. High-pulse-energy actively Qswitched Tm3+-doped silica 2 μm fibre laser pumped at 792 nm. Opt. Lett. 32, 2780–2782 (2007). https://doi.org/10.1364/OL.32.002780
  • [20] Wadsworth, W. J., Percival, R. M., Bouwmans, G., Knight, J. C. & Russell, P. St. J. High power air-clad photonic crystal fibre laser. Opt. Express 11, 48–53 (2003). https://doi.org/10.1364/OE.11.000048
  • [21] Kadwani, P. et al. Qswitched thulium-doped photonic crystal fibre laser. Opt. Lett. 37, 1664–1666 (2012). https://doi.org/10.1364/OL.37.001664
  • [22] Stutzki, F., Jansen, F., Jauregui, C., Limpert, J. & Tünnermann, A. 2.4 mJ, 33 W Qswitched Tm-doped fiber laser with near diffraction-limited beam quality. Opt. Lett. 38, 97–99 (2013). https://doi.org/10.1364/OL.38.000097
  • [23] Schneider, J. et al. High-energy nanosecond pulse extraction from a Tm3+-doped photonic crystal fiber laser emitting at 2050 nm with narrow linewidth. Opt. Express 32, 32309–32321 (2024). https://doi.org/10.1364/OE.531146
  • [24] Miluski, P. et al. Tm3+/Ho3+ profiled co-doped core area optical fibre for emission in the range of 1.6–2.1 μm. Sci. Rep. 13, 13963 (2023). https://doi.org/10.1038/s41598-023-41097-2
  • [25] Miluski, P. et al. Tm3+ doped multi-ring profile single-mode fiber laser for application in the eye-safe spectral range. J. Light. Technol. 42, 3844–3851 (2024). https://doi.org/10.1109/JLT.2024.3364154
  • [26] Sujecki, S. Numerical analysis of Qswitched erbium ion doped fluoride glass fibre laser operation including spontaneous emission. Appl. Sci. 8, 803 (2018). https://doi.org/10.3390/app8050803
  • [27] Schneider, J., Forster, P., Romano, C., Eichhorn, M. & Kieleck, C. Investigation of the pulse energy limits of actively Qswitched polarization-maintaining Tm3+-doped fiber lasers. OSA Contin. 4, 1577–1586 (2021). https://doi.org/10.1364/OSAC.423812
Uwagi
The research project was funded by the National Science Centre (Poland) granted based on the decision no. UMO-2020/37/B/ST7/03094.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-85dfaec5-efee-4cef-87b8-e3d67829245d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.