Identyfikatory
Warianty tytułu
Przemiany nanocząsteczek metali w środowisku wodnym i zagrożenie dla bezpieczeństwa środowiskowego
Języki publikacji
Abstrakty
Purpose: The aim of the article is to provide information on the transformation and interaction of metal nanoparticles in the aquatic environment. Introduction: Nanotechnology is one of the leading fields of science, combining knowledge in the fields of physics, chemistry, biology, medicine, computer science and engineering. Nanoparticles of heavy metals, due to their structure and size, exhibit new important biological, chemical and physical properties, which are impossible to achieve at the level of macro- and microscopic structures. Nanoparticles of metal and metal oxides (NPMOs) are promising substances with a wide spectrum of applications in many areas. The increasing number of products based on (NPMOs) leads to the emission of an increasing amount of these substances in various forms to the environment. The presence of NPMOs in industrial and municipal sewage affects their further migration to surface waters and soils, which in turn also leads to their introduction into the food chain. Therefore, understanding the properties and behaviour of these substances in aqueous solutions is becoming a priority in the field of safety, environmental protection and human health. Methodology: The article was prepared on the basis of a review of the literature on the subject. Conclusions: Nanoparticles of metals and metal oxides are widely used in various areas of human life, which means that they constitute an increasingly important group of compounds released to the environment, including to surface waters. Nanoparticles of metal and metal oxides play an important role in the aquatic environment, affecting numerous biophysicochemical processes. However, it should be noted that many of the processes that NPMOs undergo are determined by the size of the grains and surfaces of nanoparticles, and the metals that form the basis of these nanosubstances. Processes such as agglomeration, sedimentation, sorption on the surface of organisms, oxidation and catalysis are conditioned by numerous parameters such as the presence of other substances, the acidification/alkalization of the aquatic environment, and the presence of plant and animal organisms. In order to assess the actual or potential threat to the environment or human exposure, it is necessary to explore the mechanisms and kinetics of processes occurring in the aquatic environment with respect to nanoparticles of metals and metal oxides. Knowledge of NPMOs processes in the aquatic environment is necessary to create or enhance environmental migration models.
Cel: Celem artykułu jest przedstawienie informacji na temat przemian i interakcji nanocząstek metali zachodzących w środowisku wodnym. Wprowadzenie: Nanotechnologia to jedna z wiodących dziedzin nauki, łącząca wiedzę z obszaru fizyki, chemii, biologii, medycyny, informatyki i inżynierii. Nanocząstki metali ciężkich, ze względu na budowę i rozmiary, wykazują nowe istotne właściwości biologiczne, chemiczne oraz fizyczne, niemożliwe do osiągnięcia na poziomie makro- i mikroskopowych struktur. Nanocząstki metali i tlenków metali są atrakcyjnymi substancjami o szerokim spektrum zastosowań w wielu dziedzinach. Wzrost produkcji wyrobów z wykorzystaniem nanocząstek metali i tlenków metali (NPMOs) sprawia, że coraz większa liczba tych substancji przedostaje się do środowiska. Obecność NPMOs w ściekach przemysłowych i miejskich wpływa na ich dalszą migrację do wód powierzchniowych oraz gleb, co w konsekwencji skutkuje także wprowadzeniem ich do łańcucha pokarmowego. Dlatego też poznanie właściwości i zachowania tych substancji w roztworach wodnych staje się priorytetem w dziedzinie bezpieczeństwa, ochrony środowiska i człowieka. Metodologia: Artykuł został opracowany na podstawie przeglądu literatury z zakresu poruszanej tematyki. Wnioski: Nanocząstki metali i tlenków metali są powszechnie stosowane w różnych dziedzinach życia człowieka, co powoduje, że stanowią coraz bardziej istotną grupę związków emitowanych do środowiska, w tym do wód powierzchniowych. Nanocząstki metali i tlenków metali odgrywają istotną rolę w środowisku wodnym, determinując liczne procesy biofizykochemiczne. Należy jednak zaznaczyć, że wiele procesów, którym ulegają NPMOs, uwarunkowana jest wielkością ziaren i powierzchni nanocząstek oraz metalami, stanowiących bazę tych nanosubstancji. Procesy takie jak aglomeracja, sedymentacja, sorpcja na powierzchni organizmów, utlenianie czy kataliza, uwarunkowane są licznymi parametrami, m. in. obecnością innych substancji, zakwaszeniem/alkalizacją środowiska wodnego, obecnością organizmów roślinnych i zwierzęcych. Konieczne jest poznanie mechanizmów oraz kinetyki procesów zachodzących w środowisku wodnym w odniesieniu do nanocząstek metali i tlenków metali w celu oszacowania rzeczywistego lub potencjalnego zagrożenia dla środowiska lub narażenia ludzi. Wiedza w zakresie procesów, jakim ulegają NPMOs w środowisku wodnym, jest niezbędna w celu stworzenie lub dopracowania już funkcjonujących modeli migracji zanieczyszczeń w środowisku.
Czasopismo
Rocznik
Tom
Strony
54--68
Opis fizyczny
Bibliogr. 68 poz., rys.
Twórcy
autor
- The State Water Holding Polish Waters / Państwowe Gospodarstwo Wodne Wody Polskie
autor
- Scientific and Research Centre for Fire Protection – National Research Institute / Centrum Naukowo - Badawcze Ochrony Przeciwpożarowej im. Józefa Tuliszkowskiego – Państwowy Instytut Badawczy
Bibliografia
- [1] Tomczyk-Wydrych I., Rabajczyk A., Nanocząstki metali w wodach powierzchniowych – zagrożenie dla organizmów wodnych, Safety & Fire Technology 2019, 54.
- [2] Amde M., Liu J., Tan Z-Q., Bekana D., Transformation and bioavailability of metal oxide nanoparticles in aquatic and terrestrial environments. A review, “Environmental Pollution” 2017, 230, 250–267, https://doi.org/10.1016/j.envpol.2017.06.064.
- [3] Bundschuh M., Filser J., Lüderwald S., McKee M. S., Metreveli G., Schaumann G.E., Schulz R., Wagner S., Nanoparticles in the environment: where do we come from, where do we go to?, “Environmental Sciences Europe” 2018, 30, 6, https://doi.org/10.1186/s12302-018-0132-6.
- [4] Buzea C, Pachec I. I., Robbie K., Nanomaterials and nanoparticles: Sources and toxicity, “Biointerphases” 2007, 2, 4, 17–71, https://doi.org/10.1116/1.2815690.
- [5] Christian P., Von der Kammer F., Baalousha M., Hofmann T., Nanoparticles: structure, properties, preparation and behavior in environmental media, “Ecotoxicology” 2008, 17, 326–343, https://doi.org/10.1007/s10646-008-0213-1.
- [6] Gulliver J. S., Air-Water Mass Transfer Coefficients, w: Handbook of Chemical Mass Transport in the Environment, Thibodeaux L. J., Mackay D. (red.), Taylor and Francis Group, LLC, 2011.
- [7] Thibodeaux L. J., Justin E., Birdwell J. E., Reible D. D., Diffusive Chemical Transport across Water and Sediment Boundary Layers, w: Handbook of Chemical Mass Transport in the Environment, Thibodeaux L. J., Mackay D. (red.), Taylor and Francis Group, LLC, 2011.
- [8] Markus A. A., Parsons J. R., Roex E. W. M., de Voogt P., Laane R. W. P M., Modeling aggregation and sedimentation of nanoparticles in the aquatic environment, “Journal & Books” 2015, 506–507, 323–329, https://doi.org/10.1016/j.scitotenv.2014.11.056.
- [9] Rabajczyk A., Sykała E., The role of suspended matters as solid supporters of heavy metals in water environment, “Humic Substances in Ecosystems” 2009, 8, 134–141.
- [10] Handy R. D., Owen R., Valsami-Jones E., The ecotoxicology of nanoparticles and nanomaterials: current status, knowledge gaps, challenges, and future needs, “Ecotoxicology” 2008, 17, 5, 315–325, https://doi.org/10.1007/s10646-008-0206-0.
- [11] Muller N. C., Nowack B., Exposure Modeling of Engineered Nanoparticles in the Environment, “Environmental Science & Technology” 2008, 42, 4447–4453, https://doi.org/10.1016/j.impact.2017.06.005.
- [12] Najafpour M. M., Isaloo M. A., Eaton-Rye J. J., Tomo T., Nishihara H., Satoh K., Carpentier R., Shen J., Allakhverdiev S. I., Water exchange in manganese-based water-oxidizing catalysts in photosynthetic systems: From the water oxidizing complex in photosystem II to nano-sized manganese oxides, “Biochimica et Biophysica Acta” 2014, 16, 2–14, https://doi.org/10.1016/j.bbabio.2014.03.008.
- [13] Klaine S. J., Alvarez P. J. J., Batley G. E., .Fernandes T. F, Handy R. D., Lyon D. Y., Mahendra S., McLaughlin M. J., Lead J. R., Nanomaterials in the environment: Behavior, fate, bioavailability, and effects, “Environmental Toxicology & Chemistry” 2008, 27, 9, 1825-1851.
- [14] Navarro E., Baun A., Behra R., Hartmann N. B., Filser J., Miao A. J., Quigg A., Santschi P. H., Sigg L., Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi, “Ecotoxicology” 2008, 17, 5, 372–386, https://doi.org/10.1007/s10646-008-0214-0.
- [15] Jahan S, Yusoff I. B., Alias Y. B., Bakar A. F. B. A., Reviews of the toxicity behawior of five potential engineered nanomaterials (ENMs) into the aquatic ecosystem, “Toxicology Reports” 2017, 4,, 211–220, https://doi.org/10.1016/j.toxrep.2017.04.001.
- [16] VanLoon G. W., Duffy S. J., Chemia środowiska, Wydawnictwo Naukowe PWN, Warszawa 2007.
- [17] Kowal A. L., Świderska-Bróź M., Oczyszczanie wody, Wydawnictwo Naukowe PWN, Warszawa 2007.
- [18] Darko B., Jiang J-Q., Kim H., Machala L., Zboril R., Sharma V. K., Advances Made in Understanding the Interaction of Ferrate(VI) with Natural Organic Matter in Water, “Water Reclamation and Sustainability” 2014, 183–197, https://doi.org/10.1016/B978-0-12-411645-0.00008-0.
- [19] Ghosh S., Mashayekhi H., Pan B., Bhowmik P., Xing B., Colloidal Behavior of Aluminum Oxide Nanoparticles As Affected by pH and Natural Organic Matter, “Langmuir” 2008, 24, 12385–12391, https://doi.org/10.1021/la802015f.
- [20] Kim J. K., Alajmy J., Borges A. C., Joo J. Ch., Ahn H., Campos L. C., Degradation of Humic Acid by Photocatalytic Reaction Using Nano-sized ZnO/Laponite Composite (NZLC), “Water Air & Soil Pollution” 2013, 224, 1749,https://doi.org/10.1007/s11270-013-1749-0.
- [21] Linnik P. N., Ivanechko Ya. S., Linnik R. P., Zhezherya V. A., Humic Substances in Surface Waters of the Ukraine, “Russian Journal of General Chemistry” 2013, 83, 13, 2715– 2730, https://doi.org/10.1134/S1070363213130185.
- [22] Rabajczyk A., Namieśnik J., Speciation of iron in the aquatic environment, “Water Environment Research” 2014, 86, 8, 741–758, https://doi.org/10.2175/106143014X13975035525906.
- [23] Loosli F., Le Coustumer P., Stoll S., Effect of natural organic matter on the disagglomeration of manufactured TiO2 nanoparticles, “Environmental Science: Nano” 2014, 1, 154–160, https://doi.org/10.1039/c3en00061c.
- [24] Fabrega J., Fawcett S. R., Renshaw J. C., Lead J. R., Silver nanoparticle impact on bacterial growth: effect of pH, concentration, and organic matter, “Environmental Science Technology” 2009, 43, 19, 7285–90, https://doi.org/10.1021/es803259g.
- [25] Zhang Y., Chen Y., Westerhoff P. Crittenden J., Impact of natural organic matter and divalent cations on the stability of aqueous nanoparticles, “Water Research” 2009, 43, 17, 4249–4257, https://doi.org/10.1016/j.watres.2009.06.005.
- [26] Zhu X., Wang J., Zhang X., Chang Y., Chen Y., The impact of ZnO nanoparticle aggregates on the embryonic development of zebrafish (Danio rerio), “Nanotechnology” 2009, 20, 19, https://doi.org/10.1088/0957-4484/20/19/195103.
- [27] Yu S., Liu J., Yin Y., Shen M., Interactions between engineered nanoparticles and dissolved organic matter: A review on mechanisms and environmental effects, “Journal of Environmental Sciences” 2018, 63, 198–217, https://doi.org/10.1016/j.jes.2017.06.021.
- [28] Lin D., Cai P., Peacock C. L., Wu Y., Gao C., Peng W., Huang Q., Liang W., Towards a better understanding of the aggregation mechanisms of iron (hydr)oxide nanoparticles interacting with extracellular polymeric substances: Role of pH and electrolyte solution, “Science of the Total Environment” 2018, 15, 645, 372–379, https://doi.org/10.1016/j.scitotenv.2018.07.136.
- [29] Lin D., Story S. D., Walker S. L., Huang Q., Liang W., Cai P., Role of pH and ionic strength in the aggregation of TiO2 nanoparticles in the presence of extracellular polymeric substances from Bacillus subtilis, “Environmental Pollution”, 2017, 228, 35–42, https://doi.org/10.1016/j.envpol.2017.05.025.
- [30] Erhayem M., Sohn M., Effect of humic acid source on humic acid adsorption onto titanium dioxide nanoparticles, “Science of the Total Environment” 2014, 470–471, 92–98, https://doi.org/10.1016/j.scitotenv.2013.09.063.
- [31] Chen G., Liu X., Su Ch., Distinct Effects of Humic Acid on Transport and Retention of TiO2 Rutile Nanoparticles in Saturated Sand Columns, “Environmental Science & Technology” 2012, 46, 7142–7150, https://doi.org/10.1021/es204010g.
- [32] Thio B. J. R., Zhou D., Keller A. A., Influence of natural organic matter on the aggregation and deposition of titanium dioxide nanoparticles, “Journal of Hazardous Materials” 2011, 189, 556–563, https://doi.org/10.1016/j.jhazmat.2011.02.072.
- [33] Zhu M., Wang H, Keller A. A., Wang T., Li F., The effect of humic acid on the aggregation of titanium dioxide nanoparticles under different pH and ionic strengths, “Science of the Total Environment” 2014, 15, 487, 375–380, https://doi.org/10.1016/j.scitotenv.2014.04.036.
- [34] Luo M., Huang Y., Zhu M., Tang Y., Ren T., Ren J., Wang H., Li F., Properties of different natural organic matter influence the adsorption and aggregation behawior of TiO2 nanoparticles, “Journal of Saudi Chemical Society” 2018, 22, 146– 154, https://doi.org/10.1016/j.jscs.2016.01.007.
- [35] Yang K., Lin D. H., Xing B. S., Interactions of humic acid with nanosized inorganic oxides, “Langmuir” 2009, 25, 3571–3576, https://doi.org/10.1021/la803701b.
- [36] Cumberland S. A., Lead J. R., Particle size distributions of silver nanoparticles at environmentally relevant conditions, “Chromatography A” 2009, 1216, 90–99.
- [37] Baalousha M., Aggregation and disaggregation of iron oxide nanoparticles: influence of particle concentration, pH and natural organic matter, “Science of the Total Environment” 2009, 407, 2093–2101, https://doi.org/10.1016/j.scitotenv.2008.11.022.
- [38] Labille J., Brant J., Stability of nanoparticles in water, “Nanomedicine” 2010, 5, 6, 985-998, https://doi.org/10.2217/nnm.10.62.
- [39] Gottschalk F., Nowack B., The release of engineered nanomaterials to the environment, “Journal of Environmental Monitoring” 2011, 13, 5, 1145–1155, https://doi.org/10.1039/c0em00547a.
- [40] Domingos R. F., Tufenkji N., Wilkinson K. J., Aggregation of Titanium Dioxide Nanoparticles: Role of a Fulvic Acid, “Environmental Science & Technology” 2009, 43, 5, 1282–1286, https://doi.org/10.1021/es8023594.
- [41] Keller A. A., Wang H., Zhou D., Lenihan H. S., Cherr G., Cardinale B. J., Miller R., Ji Z., Stability and aggregation of metal oxide nanoparticles in natural aqueous matrices, “Environmental Science & Technology” 44, 6, 2010, 1962–1967, https://doi.org/10.1021/es902987d.
- [42] Li K., Chen Y., Effect of natural organic matter on the aggregation kinetics of CeO2 nanoparticles in KCl and CaCl2 solutions: Measurements and modeling, “Journal of Hazardous Materials” 2012, 209–210, 264–270, https://doi.org/10.1016/j.jhazmat.2012.01.013.
- [43] Liu X., Wazne M., Chou T., Xiao R., Xu S., Influence of Ca2+ and Suwannee River Humic Acid on aggregation of silicon nanoparticles in aqueous media, “Water Research” 2011, 45, 1, 105–112, https://doi.org/10.1016/j. watres.2010.08.022.
- [44] Jiang Ch., Aiken G. R., Hsu-Kim H., Effects of Natural Organic Matter Properties on the Dissolution Kinetics of Zinc Oxide Nanoparticles, “Environmental Science & Technology “ 2015, 49, 19, 11476–11484, https://doi.org/10.1021/acs.est.5b02406.
- [45] Jiang X., Tong M., Kim H., Influence of natural organic matter on the transport and deposition of zinc oxide nanoparticles in saturated porous media, “Journal of Colloid and Interface Science” 2012, 386, 34–43, https://doi.org/10.1016/j.jcis.2012.07.002.
- [46] Chen G., Liu X., Su Ch., Distinct Effects of Humic Acid on Transport and Retention of TiO2 Rutile Nanoparticles in Saturated Sand Columns, “Environmental Science & Technology” 2012, 46, 7142–7150, https://doi.org/10.1021/es204010g.
- [47] Manoharan V., Ravindran A., Anjali C. H., Mechanistic insights into interaction of humic acid with silver nanoparticles, “Cell Biochemistry Biophysics” 2014, 68, 127–131, https://doi.org/10.1007/s12013-013-9699-0.
- [48] Akhil K., Chandran P., Khan S. S., Influence of humic acid on the stability and bacterial toxicity of zinc oxide nanoparticles in water, “Journal of Photochemistry & Photobiology” 2015, B: Biology 153, 289–295, https://doi.org/10.1016/j.jphotobiol.2015.10.007.
- [49] Jahan S., Yusoff I. B., Alias Y. B., Bakar A. F. B. A., Reviews of the toxicity behawior of five potential engineered nanomaterials (ENMs) into the aquatic ecosystem, “Toxicology Reports” 2017, 4, 211–220, https://doi.org/10.1016/j.toxrep.2017.04.001.
- [50] Ashraf M. A., Peng W., Zare Y., Rhee K. Y., Effects of Size and Aggregation/Agglomeration of Nanoparticles on the Interfacial/Interphase Properties and Tensile Strength of Polymer Nanocomposites, “Nanoscale Research Letters” 2018, 13, 214, https://doi.org/10.1186/s11671-018-2624-0.
- [51] Illés E., Tombácz E., The effect of humic acid adsorption on pH-dependent surface charging and aggregation of magnetite nanoparticles, “Journal of Colloid and Interface Science” 2006, 295, 115–123, https://doi.org/10.1016/j.jcis.2005.08.003.
- [52] Baruah B., Dutta J., pH-dependent growth of zinc oxide nanorods, “Journal of Crystal Growth” 2019, 311, 8, 2549– 2554, https://doi.org/10.1016/j.jcrysgro.2009.01.135.
- [53] Alias S., Ismail A. B., Mohamad A. A., Effect of pH on ZnO nanoparticle properties synthesized by sol–gel centrifugation, “Journal of Alloys Compounds” 2010, 499, 2, 231–237, https://doi.org/10.1016/j.jallcom.2010.03.174.
- [54] Bian S. W., Mudunkotuwa I. A., Rupasinghe T., Grassian V. H., Aggregation anddissolution of 4 nm ZnO nanoparticles in aqueous environments: influence of pH, ionic strength, size, and adsorption of humic acid, “Langmuir” 2011, 27, 6059– 6068, https://doi.org/10.1021/la200570n.
- [55] Zhang R., Zhang H., Tu Ch., Hu X., Li L., Luo Y., Christie P., Facilitated transport of titanium dioxide nanoparticles by humic substances in saturated porous media under acidic conditions, “Journal of Nanoparticle Research” 2015, 17, 165, https://doi.org/10.1007/s11051-015-2972-y.
- [56] Liu W. S., Peng Y. H., Shiung C. E., Shih Y., The effect of cations on the aggregation of commercial ZnO nanoparticle suspension, “Journal of Nanoparticle Research” 2012, 14, 12, 1259, https://doi.org/10.1007/s11051-012-1259-9.
- [57] Liu G., Wang D., Wang J., Mendoza C., Effect of ZnO particles on activated sludge: Role of particle dissolution, “Science of the Total Environment” 2011, 409, 14, 2852–2857, https://doi.org/10.1016/j.scitotenv.2011.03.022.
- [58] Xia T., Kovochich M., Liong M., Madler L., Gilbert B., Shi H., Yeh J. I., Zink J. I., Nel A. E., Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties, “ACS Nano” 2008, 2, 10, 2121–2134, https://doi.org/10.1021/nn800511k.
- [59] Tang W. W., Zeng G. M., Gong J. L., Liang J., Xu P., Zhang Ch., Huang B.-B., Impact of humic/fluvic acid on the removal of heavy metal from aqueous solutions using nanomaterials: A review, “Science of the Total Environment” 2014, 468, 469, 1014-1027, https://doi.org/10.1016/j.scitotenv.2013.09.044.
- [60] Zhu M., Wang H., Keller A. A., Wang T., Li F., The effect of humic acid on the aggregation of titanium dioxide nanoparticles under different pH and ionic strengths, “Science of the Total Environment” 2014, 15, 487, 375-380, https://doi.org/10.1016/j.scitotenv.2014.04.036.
- [61] Han Y., Kim D., Hwang G., Lee B., Eom I., Kim P. J., Tong M., Kim H., Aggregation and dissolution of ZnO nanoparticles synthesized bydifferent methods: Influence of ionic strength and humic acid, “Colloids and Surfaces A: Physicochemical and Engineering Aspects” 2014, 451, 7–15, https://doi.org/10.1016/j.colsurfa.2014.03.030.
- [62] Luo M., Huang Y., Zhu M., Tang Y., Ren T., Ren J., Wang H., Li F., Properties of different natural organic matter influence the adsorption and aggregation behawior of TiO2 nanoparticles, „Journal of Saudi Chemical Society” 2018, 22, 146–154, https://doi.org/10.1016/j.jscs.2016.01.007.
- [63] Rabajczyk A., El Yamani N., Dusinska M., The effect of time on the stability of iron oxide nanoparticles in environmental acids, „Water Environment Research” 2017, 89, 5, 416-423, https://doi.org/10.2175/106143016X14609975747685.
- [64] Quik J. T. K., Lynch I., Van Hoecke K., Miermans C. J. H., De Schamphelaere K. A. C., Janssen C. R., Dawson K. A., Cohen Stuart M. A., Van De Meent D., 2010: Effect of Natural Organic Matter on Cerium Dioxide Nanoparticles Settling in Model Fresh Water, “Chemosphere” 2010, 81, 6, 711–715, https://doi.org/10.1016/j.chemosphere.2010.07.062.
- [65] Lopes S., Ribeiro F., Wojnarowicz J., Łojkowski W., Jurkschat K., Crossley A., Soares A. M. V. M., Loureiro S., Zinc oxide nanoparticles toxicity to Daphnia magna: size-dependent effects and dissolution, „Environmental Toxicology and Chemistry” 2014, 33, 190–198, https://doi.org/10.1002/etc.2413.
- [66] Zhao J., Wang Z. Y., Dai Y. H., Xing B. S., Mitigation of CuO nanoparticle-induced bacterial membrane damage by dissolved organic matter, “Water Research” 2013, 47, 12, 1–10, https://doi.org/10.1016/j.watres.2012.11.058.
- [67] Yang S. P., Bar-Ilan O., Peterson R.E., Heideman W., Hamers R. J., Pedersen J.A., Influence of humic acid on Titanium dioxide nanoparticle toxicity to developing zebrafish, „Environmental Science &Technology” 2013, 47, 9, 4718–4725, https://doi.org/10.1021/es3047334.
- [68] Talia E. Abbott Chalew and Kellogg J. Schwab, Are nanoparticles a threat to our drinking water? Johns Hopkins University Water Institute, https://ehe.jhu.edu/water, [dostęp: 08.09.2012].
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-85df2457-719d-43f3-bb0d-d541f87348fd