Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
We obtain the characteristic functions of distributions in Lc,α, i.e.α-timesc-decomposable distributions in the class of infinitely divisible distributions,where 0< α ≤∞, 0< c <1. The characteristic functions of α-times selfdecomposable laws (i.e. α-times c-decomposable for each c ∈ (0,1)) are well known (see [3], [5], [9], [13]).
Czasopismo
Rocznik
Tom
Strony
443--456
Opis fizyczny
Biblogr. 14 poz.
Twórcy
autor
- Department of Mathematics, University of Bielsko-Biała
Bibliografia
- [1] J. Bunge, Nested classes of C-decomposable laws, Ann. Probab. 25 (1997), pp. 215-229.
- [2] W. Feller, Completely monotone functions and sequences, Duke Math. J. 5 (1939), pp. 661-674.
- [3] Z. Jurek, The classes Lm(Q) of probability measures on Banach spaces, Bull. Acad. Polon. Sci. Sér. Sd. Math. 31 (1983), pp. 51-62.
- [4] K. Knopp, Mehr fach monotone Zahlenfolgen, Math. Z. 22 (1925), pp. 75-85.
- [5] A. Kumar and B. M. Schreiber, Characterization of subclasses of class L probability distributions, Ann. Probab. 6 (1978), pp. 279-293.
- [6] M. Loève, Nouvelles classes de lois limites, Bull. Soc. Math. France 73 (1945), pp. 107-126.
- [7] M. Maejima and Y. N ait o, Semi-selfdecomposable distributions and a new class of limit theorems, Research Report, Keio University, Japan, 1997.
- [8] Nguyen van Thu, Multiply c-đecomposable probability measures on Banach spaces, Probab. Math. Statist. 5 (1985), pp. 251-263.
- [9] Nguyen van Thu, Multiply self-decomposable probability measures on Banach spaces, Studia Math. 66 (1979), pp. 160-175.
- [10] R. P. Phelps, Lectures on Choqueťs Theorem, New York 1966.
- [11] T. Rajba, A representation of distributions from certain classes L“, Probab. Math. Statist. 4 (1984), pp. 67-78.
- [12] T. Rajb a, On multiple decomposability of probability measures on R, Demonstratio Math. 2 (2001), pp. 275-294.
- [13] K. Sato, Class L of multivariate distributions and its subclasses, J. Multivariate Anal. 10 (1980), pp. 207-232.
- [14] D. V. Widder, The Laplace Transform, University Press, Princeton, N. J., 1941.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-85dc1710-57ce-4f1e-909b-6ab9722125af