PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Carbon Fibre Reinforced Polymer Fatigue Strengthening of Old Steel Material

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper reports the experimental results of a study investigating the effect of CFRP strengthening of metallic structures for increasing fatigue life. In the study, samples made form puddled steel and mild S235 grade steel strengthened with CFRP strips were examined. Samples were subjected to tensile fatigue loading with a stress ratio R of 0.115 and 0.130 (mild steel samples) and 0.13/1.25/0.15/1.07 (puddled steel samples). A total of 9 samples with CFRP/steel single overlap joints and 20 reference specimens were tested to determine their fatigue life and failure modes. Normal modulus CFRP strips with one cross section (20 x 1.4 mm) were used in this study. Laboratory test results showed that CFRP strengthening has visible effect on the fatigue life of the steel. The application of adhesively bonded CFRP laminates significantly prolongs fatigue life of the specimens. The increase in fatigue life of the steel samples strengthened with CFRP strips was 2 to 16 times (for mild steel) and 11.6 to 34.8 times (for puddled steel).
Twórcy
autor
  • Department of Roads and Bridges, Faculty of Civil Engineering and Architecture, Lublin University of Technology, ul. Nadbystrzycka 40, 20-618 Lublin, Poland
  • Department of Solid State Mechanics, Faculty of Civil Engineering and Architecture, Lublin University of Technology, ul. Nadbystrzycka 40, 20-618 Lublin, Poland
Bibliografia
  • 1. Hołowaty J., Wichtowski B. Properties of steel in railway bridge constructed in 1887, Roads Bridges – Roads Bridg. – Drogi Mosty, 2016; 14: 271–283. https://doi.org/10.7409/rabdim.015.018.
  • 2. Bocciarelli M., Colombi P., Fava G., Poggi C. Fatigue performance of tensile steel members strengthened with CFRP plates. Compos. Struct., 2009; 87(4): 334–343. https://doi.org/10.1016/j.compstruct.2008.02.004.
  • 3. Colombi P., Fava G. Fatigue behavior of tensile steel/CFRP joints. Compos. Struct., 2012; 94(8): 2407–2417. http://dx.doi.org/10.1016/j.compstruct.2012.03.001.
  • 4. Cremona C., Eichler B., Johansson B., Larsson T. Improved Assessment Methods for Static and Fatigue Resistance of Old Metallic Railway Bridges. J. Bridge Eng., 2013; 18: 1164–1173. https://doi.org/10.1061/(ASCE)BE.1943–5592.0000466.
  • 5. Siriwardane S.C. Vibration measurement-based simple technique for damage detection of truss bridges: A case study”, Case Stud. Eng. Fail. Anal., 2015; 4: 50–58. https://doi.org/10.1016/j.csefa.2015.08.001.
  • 6. Brûhwiler E., Smith I., Hirt M.A. Fatigue and fracture of riveted bridge members. J. Struct. Eng., 1990; 116(1): 198–214.
  • 7. Haghani R., Al-Emrani M., Hesmati M. Fatigue-prone details in steel bridges. Buildings, 2012; 2(4): 456–476. https://doi.org/10.3390/build-ings2040456.
  • 8. Åkesson B. Fatigue Life of Riveted Steel Bridges. London, UK: Taylor & Francis Group, 2010.
  • 9. Kowal M. Effect of Adhesive Joint End Shapes on the Ultimate Load-Bearing Capacity of Carbon Fibre-Reinforced Polymer/Steel Bonded Joints. Adv. Sci. Technol. Res. J., 2021; 15(4): 299–310. https://doi.org/10.12913/22998624/142370.
  • 10. Lepretre E., Chataigner S., Dieng L., Gaillet L. Fatigue strengthening of cracked steel plates with CFRP laminates in the case of old steel material”, Constr. Build. Mater., 2018; 174: 421–432. https://doi.org/10.1016/jconbuildmat.2018.04.063
  • 11. Hollaway L.C., Cadei J. Progress in the technique of upgrading metallic structures with advanced polymer composites”, Prog Struct Engng Mater, 2002; 4: 131–148. https://doi.org/10.1002/pse.112
  • 12. Cadei J.M.C., Stratford T.J., Duckett W.G., Hollaway L.C. Strengthening metallic structures using externally bonded fibre-reinforced polymers. Constr. Ind. Res. Inf. Assoc., 2004; C595.
  • 13. Retrofit of Steel Structures Using Fiber Reinforced Polymers (FRP): State-of-the-Art. DC, USA Washington: Transportation Research Board (TRB) Annual Meeting, 2004.
  • 14. Łagoda G., Łagoda M. Strengthening steel bridge across Vistula River in Poland”, w Safe and Resource Efficient, Bangkok, Thailand, September, 2009; 96.
  • 15. Łagoda M. Strengthening bridges by gluing elements/ Wzmacnianie mostów przez doklejanie elementów (Polish). Kraków: Wydawnictwo Politechniki Krakowskiej, 2005.
  • 16. Kowal M. Strengthening of steel construction elements with carbon composite strips/(in Polish) Wzmacnianie elementów konstrukcji stalowych węglowymi taśmami kompozytowymi. Lublin: Politechnika Lubelska, 2016. [Online]. Available at: http://bc.pollub.pl/dlibra/docmetadata?id=12855&from=&dirids=1&ver_id=&lp=4&QI=.
  • 17. Kowal M., Łagoda M. Strengthening of steel structures with CFRP strips”, Roads Bridg. – Drogi Mosty, 2017; 16(2): 85–99. http://dx.doi.org/10.7409/rabdim.017.006.
  • 18. Miller T.C., Chajes M.J., Mertz D.R., Hastings J.N. Strengthening of a steel bridge girder using CFRP plates. J. Bridge Eng., 2001; 6(6), 514–522.
  • 19. Tavakkolizadeh M., Saadatmanesh H. Fatigue strength of steel girders strengthened with carbon fiber reinforced polymer patch. J. Struct. Eng., 2003; 129: 186–196. https://doi.org/10.1061/(ASCE)0733–9445(2003)129:2(186).
  • 20. Liu H., Al-Mahaidi R., Zhao X.L. Experimental study of fatigue crack growth behaviour in adhesively reinforced steel structures. Compos. Struct., 2009; 90(1): 12–20, https://doi.org/10.1016/j.compstruct.2009.02.016.
  • 21. Kim Y.J., Harries K.A. Fatigue behavior of damaged steel beams repaired with CFRP strips. Eng. Struct., 2011; 33: 1491–1502. https://doi.org/10.1016/j.engstruct.2011.01.019.
  • 22. Yu Q.Q., Zhao X.L., Al-Mahaidi R., Xiao Z.G., Chen T., Gu X.L. Tests on cracked steel plates with different damage levels strengthened by CFRP laminates. Int. J. Struct. Stab. Dyn., 2014; 14(6), 1–26. https://doi.org/10.1142/S0219455414500187.
  • 23. Taljsten B., Hansen C.S., Schmidt J.W. Strengthening of old metallic structures in fatigue with prestressed and non-prestressed CFRP laminates”, Constr. Build. Mater., 2009; 23: 1665–1677. https://doi.org/10.1016/j.conbuildmat.2008.08.001.
  • 24. Hosseini A., Ghafoori E., Motavalli M., Nussbaumer A., Zhao X.L. Mode I fatigue crack arrest in tensile steel members using prestressed CFRP plates. Compos. Struct., 2017; 178: 119–134. http://dx.doi.org/10.1016/j.compstruct.2017.06.056.
  • 25. Wu C., Zhao X.L., Al-Mahaidi R., Emdad M.R., Duan W. Fatigue tests of cracked steel plates strengthened with UHM CFRP plates. Adv. Struct. Eng., 2012; 15: 1801–1816.
  • 26. Borrie D., Zhao X.L., Singh Raman R.K., Bai Y. Fatigue performance of CFRP patched pre-cracked steel plates after extreme environmental exposure. Compos. Struct., 2016; 153: 50–59. http://dx.doi.org/10.1016/j.compstruct.2016.05.092.
  • 27. Fawzia S., Al-Mahaidi R., Zhao X.L. Experimental and finite element analysis of a double strap joint between steel plates and normal modulus CFRP”, Compos. Struct., 2006; 75: 156–162. https://doi.org/10.1016/j.compstruct.2006.04.038.
  • 28. Jones C., Civjan S.A. Application of fiber reinforced polymer overlays to extend steel fatigue life”, J.Compos. Constr., 2003; 7(4): 331–338. https://doi.org/10.1061/(ASCE)1090–0268(2003)7:4(331).
  • 29. Macek W. Post-failure fracture surface analysis of notched steel specimens after bending-torsion fatigue. Eng Fail Anal., 2019. https://doi.org/10.1016/j.engfailanal.2019.07.056.
  • 30. Macek W. Fracture Areas Quantitative Investigating of Bending-Torsion Fatigued Low-Alloy High-Strength Steel. Metals, 2021; 11: 1620. https://doi.org/10.3390/MET11101620.
  • 31. Branco R., Costa J.D., Borrego L.P., Macek W., Berto F. Notch fatigue analysis and life assessment using an energy field intensity approach in 7050-T6 aluminium alloy under bending-torsion loading. Int J Fatigue, 2022; 162: 106947. https://doi.org/10.1016/J.IJFATIGUE.2022.106947.
  • 32. Macek W., Owsiński J., Trembacz J., Branco R. Three-dimensional fractographic analysis of total fracture areas in 6082 aluminium alloy specimens under fatigue bending with controlled damage degree. Mech. Mater., 2020; 147. https://doi.org/10.1016/j.mechmat.2020.103410.
  • 33. Macek W., Macha E. The Control System Based on FPGA Technology For Fatigue Test Stand MZGS-100 PL”, Arch. Mech. Eng., 2015; 62. https://doi.org/10.1515/meceng-2015–0006.
  • 34. Macek W., Martins R.F., Branco R., Marciniak Z., Szala M., Wroński S. Fatigue fracture morphology of AISI H13 steel obtained by additive manufacturing. Int. J. Fract., 2022; 235: 1. https://doi.org/10.1007/s10704–022–00615–5.
  • 35. Kumar P., Radhakrishnan J., Suryawanshi J., Satwik U.R., McKinnell J., Ramamurty U. Fatigue strength of additively manufactured 316L austenitic stainless steel. Acta Materalia, 2020; 199. https://doi.org/10.1016/j.actamat.2020.08.033.
  • 36. Kahlin M. et al. Improved fatigue strength of additively manufactured Ti6Al4V by surface post processing. Int. J. Fatigue, 2020; 134: 134. https://doi.org/10.1016/j.ijfatigue.2020.105497.
  • 37. Liu H., Zhao X.L., Al-Mahaidi R., Poggi C. Boundary element analysis of CFRP reinforced steel plates”, Compos. Struct., 2009; 91: 74–83. https://doi.org/10.1016/j.compstruct.2009.04.032.
  • 38. Aljabar N.J., Zhao X.L., Al-Mahaidi R., Ghafoori E., Motavalli M., Koay Y.C. Fatigue tests on UHM-CFRP strengthened steel plates with central inclined cracks under different damage levels. Compos. Struct., 2017; 160: 995–1006. https://doi.org/10.1016/j.compstruct.2016.10.122.
  • 39. Tsouvalis N.G., Mirisiotis L.S., Dimou D.N. Experimental and numerical study of the fatigue behaviour of composite patch reinforced cracked steel plates. Int. J. Fatigue, 2009; 31: 1613–1627. https://doi.org/10.1016/j.ijfatigue.2009.04.006.
  • 40. Kowal M., Szala M. Diagnosis of the microstructural and mechanical properties of over century-old steel railway bridge components. Eng. Fail. Anal., 110. https://doi.org/10.1016/j.eng-failanal.2020.104447.
  • 41. Emdad M.R., Al-Mahaidi R. Effect of prestressed CFRP patches on crack growth of centre-notched steel plates. Compos Struct, 123, 109–122.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-85db27ec-6506-45c0-a37e-ebe8c5e2ace1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.