PROBLEMS OF MECHATRONICS ARMAMENT, AVIATION, SAFETY ENGINEERING

ISSN 2081-5891 \leftarrow **6, 2** (20), 2015, 7-20

Natural Frequencies of Small Cylinders and Tubes

Peter LISY* , Peter PERUN

Department of Mechanical Engineering Academy of the Armed Forces Gen. M.R. Štefánik, Demänová 393, 031 06 Liptovský Mikuláš 6, Slovak Republik ***** *corresponding author, e-mail: peter.lisy@aos.sk*

Manuscript received November 09, 2014. Final manuscript received February 11, 2015

DOI: 10.5604/20815891.1157770

Abstract. The paper deals with modal analysis of the cylinders and tubes and their mutual comparison. Nowadays, modal analysis is a powerful method of describing the vibration properties. When we know own shapes and natural frequencies, we can predict e.g. behaviour of tubes under loading conditions. The tubes dimensions were taken as dimensions which are close to assault rifle barrels. The same dimensions were taken for cylinders. The cylinders and tubes as 3D objects were modelled and their lengths and thicknesses were modified. Modal analysis was performed by LS-DYNA software using FEM with iterative Lanczos method. In Tables 1-12, the natural frequencies for these cantilever beams and their corresponding own shapes with modification in fixing length for three different thicknesses are listed. In Figure 2 and 7-9, these natural frequencies versus modification in fixing length for three different thicknesses for corresponding modes are shown. In Figure 3-5 and 10-12, natural frequencies versus length of cylinders and tubes for three different thicknesses for corresponding modes are shown. **Keywords:** mechanics, modal analysis, cylinder, tube, small weapon barrel

1. INTRODUCTION

This paper relates to natural frequencies and own shapes for three cylinders and tubes with different lengths and thicknesses and their various fixing lengths. The fixing length simulates fixation of a weapon barrel to a weapon case which is different for various weapons. The tube dimensions were taken as dimensions which are close to the barrel dimensions for assault rifles which are main weapon for individual. The same outer diameters and lengths of cylinders were taken for comparison of the behaviour of full material with material which has a hole along an axis at modal analysis. This hole simulated a weapon calibre which was chosen as 5.56 mm, which is the standard in NATO countries. For automatic shooting, it is necessary to know a value of natural frequencies. They are also important for exciting barrel vibration at a single shot, where during the shoot the barrel is affected with pressure of powder gases and moving bullet. For accurate fire we need to know barrel muzzle behaviour at the moment when the bullet leaves it. Some authors deal with this problem [1-6]. The simulation can help for research on design of assault rifles in the future.

2. LS-DYNA MODEL ANALYSIS

Very often at vibrations, the problem is solution of eigenproblem. The effective procedures for calculation of only a few eigenvalues and corresponding eigenvectors by finite element equations have been developed with Lanczos transformations based on iterations. The basic finite formulation of the problem is described by equation [7]:

$$
\mathbf{K}\mathbf{\Phi} - \omega^2 \mathbf{M}\mathbf{\Phi} = 0 \tag{1}
$$

where **K** is the stiffness matrix; Φ – vector of the order *n* (or mode shape vector); $n -$ desired eigenmodes; $\omega -$ corresponding frequency of vibration of the vector Φ ; **M** – the mass matrix.

For solving the problem, the geometry of the cylinders and tubes was defined in LS-DYNA [8]. The lengths and outer diameters for tubes were chosen close to the barrel dimensions for assault rifles which are main weapon for individual. The same dimensions were taken for cylinders. The first, three cylinders were designed with different lengths (448 mm, 488 mm, and 528 mm) where each of them has both three different outer diameters (15 mm, 20 mm, and 25 mm) and five fixing lengths at the one end (20 mm, 30 mm, 40 mm, 50 mm, and 60 mm). The tubes dimensions were taken the same as for cylinders and inner diameter was taken as 5.56 mm simulating a weapon calibre which is standard in NATO countries (Fig. 1). The same outer diameters and lengths of cylinders were taken for comparison of behaviour of full material with material which has a hole along axis at modal analysis. The material for both cylinders and tubes was chosen as elastic one with material parameters for steel.

The cylinders and tubes were created with 8-node hexahedral solid elements. The model for the longest cylinder has 22 737 nodes and 17 472 solid elements and shorter variations have less both nodes and elements according to their lengths. The longest model for the tube has 39 432 nodes and 31 200 solid elements and its shorter variations have less nodes and solid elements according to the length. That means that models for three different lengths for each type have the same structure of mesh.

Fig. 1. The design cylinder with 20 mm fixing length and tube with 50 mm fixing length, both on the left side

In Tables 1-3, there are listed natural frequencies for 448-mm long cylinder with three different outer diameters and modification in fixing length.

Table 1. Natural frequencies and corresponding mode shapes

Table 2. Natural frequencies and corresponding mode shapes

Cylinder 448 mm/25 mm						
Mode	Fixing length [mm]					
	20	30	40	50	60	
1.	98.09	102.93	108.14	113.75	116.04	
2.	607.8	637.43	669.28	703.56	718.81	
3.	1673	1753.2	1839.2	1931.6	1976.4	
4.	1857.3	1902.6	1950.2	12000.2	\$2052.8\$	
6.	\leftrightarrow 3010.5	\leftrightarrow 3084	\leftrightarrow 3161.2	\leftrightarrow 3242.4	\leftrightarrow 3263.4	
5.	3202.4	3352.3	3512.9	3685	3775.9	

Table 3. Natural frequencies and corresponding mode shapes

For other two 488-mm and 528-mm long cylinders, in this paper, the results are not presented in form of table but only in a graphical form. In all tables, the sign \uparrow means torsional mode and the sign \leftrightarrow means extension mode.

From Tables 1-3 and from Figures 2, there are evident the dependences of natural frequencies versus fixing length for 448-mm long cylinders with different diameters at modes from one to six. For each bending mode, it is evident its linear dependence, where modal frequencies have increasing tendency with increase in outer diameter. Very interesting is that each torsional mode 4 and extension mode 6 have almost the same values of natural frequencies at different outer diameters. However, in the cylinders which are longer or thicker, both torsional and extension mode can overtake the bending mode. It is evident e.g. from Table 3, where extension mode 6 keeps almost the same natural frequency at the outer diameter of 25 mm as at 20 mm or 15 mm, but at the bigger outer diameter, bending mode 5 has higher natural frequencies. Accordingly, each bending mode starts firstly at the axis *y* and next at the axis *x*.

Figures 3-5 show natural frequency dependences from the cylinder length. From these dependences, it is evident that with increasing length of cylinder, the modal frequencies decrease.

In Tables 4-6, there are listed natural frequencies for 448-mm long tube with three different outer diameters and modification in fixing length. Also in Tables 4-6 it is shown at which axis the bending mode starts because it is very different to determine it from behaviour of the cylinders and also from tubes.

Fig. 2. Natural frequency vs fixing length for 448-mm long cylinders with different diameters at modes 1-6

For example, 62.88/x5l means that the first number is the value of natural frequency, x5l is the direction $(x - axis x)$ at which bending mode starts at 5° degree (5) from the axis x on the right. Next, it starts at 5° degree on the left (1) from the axis *y* (Fig. 6). The explanation is valid also for Tables 7-12 in this paper.

Fig. 6. Example of behaviour bending mode

From Tables 4-6 and from Figure 7, there are evident the dependences of natural frequencies versus fixing length for 448-mm long tubes with different outer diameters at modes from one to six.

For each bending mode it is evident linear dependence, where modal frequencies have increasing tendency with increase in outer diameter.

Tube 448 mm/15 mm							
Mode	Fixing length [mm]						
	20	30	40	50	60		
	62.88/x51	65.98/x30r	69.32/y	72.92/x101	76.81/x30r		
2.	391.86/y451	411.09/y45r	431.77/y451	454.04/x301	478.08/y45r		
3.	1088/y451	1141/y45r	1197.8/y451	1259/x151	1325/y45r		
4.	1861.5	1906.9	1954.6	12004.7	12057.4		
5.	2107.3/y451	2208.6/y45r	2317.3/y451	2434.1/x	2560/y45r		
6.	\leftrightarrow 3008.7	\leftrightarrow 3082.2	\leftrightarrow 3159.3	\leftrightarrow 3240.4	\leftrightarrow 3325.8		

Table 4. Natural frequencies and corresponding mode shapes

Table 5. Natural frequencies and corresponding mode shapes

Tube 448 mm/20 mm							
Mode	Fixing length [mm]						
	20	30	40	50	60		
1.	81.55/y451	85.57 /y $45r$	89.90/y451	94.57/y451	99.61/x30r		
2.	506.56/y451	531.33/y45r	557.95/y451	586.62/x	617.54/y45r		
3.	1399.6/y451	1467.1/y45r	1539.6/y451	1617.5/x	1701.4/y45r		
4.	\$1860.7	\$1906.1	1953.8	12003.9	12056.6		
5.	2692.5/y451	2819.9/y45r	2956.6/y451	3103.2/x	3260.9/y45r		
6.	\leftrightarrow 3009.5	\leftrightarrow 3083	\leftrightarrow 3160.2	\leftrightarrow 3241.3	\leftrightarrow 3326.7		

Table 6. Natural frequencies and corresponding mode shapes

Very interesting is that each torsional mode 4 and extension mode 6 have almost the same values of natural frequencies at different outer diameters. This behaviour is the same like for the cylinders. However, when the tube is thicker, torsional mode 4 at 60 mm fixing overtakes bending mode 3 which has higher natural frequency and extension mode 6 overtakes bending mode 5 which has higher natural frequency at all fixing lengths (Tab. 6).

Fig. 7. Natural frequency vs fixing length for 448-mm long tubes with different outer diameters at modes 1-6

In Tables 7-9, there are listed natural frequencies for 488-mm long tube with three different outer diameters and modification in fixing length. Also in Tables 7-9 it is shown at which axis the bending mode starts because it is very different to determine it from behaviour of the cylinders and also from tubes.

Tube 488 mm/15 mm							
Mode	Fixing length [mm]						
	20	30	40	50	60		
	52.58/x	54.94/y	57.46/y15r	60.17/y151	63.07/y45r		
2.	327.96/y151	342.62/y45r	358.29/y	375.05/x151	393.02/y30r		
3.	911.83/y151	952.3/y45r	995.52/y	1041.7/x	1091.2/y30r		
4.	11702.2	\$1740	11779.5	\$1820.9	11864.3		
5.	1769.3/y30r	1847/x	1930/y15r	2018.6/x301	2113.4/y45r		
6.	\leftrightarrow 2751	\leftrightarrow 2812.2	\leftrightarrow 2876.1	\leftrightarrow 2943.1	\leftrightarrow 3013.2		

Table 7. Natural frequencies and corresponding mode shapes

Table 8. Natural frequencies and corresponding mode shapes

Table 9. Natural frequencies and corresponding mode shapes

From Tables 7-9 and from Figure 8 there are evident the dependences of natural frequencies versus fixing length for 488-mm long tubes with different outer diameters at modes from one to six. For each bending mode it is evident linear dependence, where modal frequencies have increasing tendency with increase in outer diameter. Very interesting is that each torsional mode 4 and extension mode 6 have almost the same values of natural frequencies at different outer diameters. This behaviour is the same like at cylinders and 448-mm long tubes. However at 25-mm outer tube diameter, extension mode 6 overtake bending mode 5 which has higher natural frequencies at 30-60 mm fixing lengths (Tab. 9).

Fig. 8. Natural frequency vs fixing length for 488-mm long tubes with different outer diameters at modes 1-6

In Tables 10-12, there are listed natural frequencies for 528-mm long tubes with three different outer diameters and modification in fixing length. Also in Tables 10-12 it is shown at which axis the bending mode starts because it is very different to determine it from behaviour of the cylinders and also from tubes.

Tube $528 \text{ mm}/15 \text{ mm}$						
Mode	Fixing length [mm]					
	20	30	40	50	60	
1.	44.61/x301	46.45/x30r	48.41x	50.49/x	52.71/x	
2.	278.49/y301	289.92/x30r	302.07/y30r	315/y151	328.78/x30r	
3.	775.09/y301	806.72/x30r	840.32/y101	876.05/y201	914.1/x30r	
5.14.	1506.1/y301	1567.1/x30r	1631.7/y101	11668.1	11704.3	
4.15.	11568	\uparrow 1600	11633.3	1700.5/y101	1773.6/x15r	
7.76.	2463.6/y151	2662.2/y45r	\leftrightarrow 2639.6	\leftrightarrow 2695.8	\leftrightarrow 2754.5	
6.77.	\leftrightarrow 2533.9	\leftrightarrow 2585.7	2666.8/y101	2777.8/y51	2895.9/x5r	

Table 10. Natural frequencies and corresponding mode shapes

Table 11. Natural frequencies and corresponding mode shapes

Tube 528 mm/20 mm						
Mode	Fixing length [mm]					
	20	30	40	50	60	
	57.86/y451	60.25/x301	62.79 /y $45r$	65.48/x301	68.36/x	
2.	360.37/y151	375.13/x	390.81/y10r	407.49/y301	425.27/x	
3.	999.44/y201	1040/x	1083/y101	1128.7/y301	1177.4/x	
4.	11567.4	11599.3	1632.7	1667.4	11703.6	
5.	1932.5/y301	2009.8/x	2091.8/y201	2178.9/y201	2271.4/x301	
6.	\leftrightarrow 2534.5	\leftrightarrow 2586.3	\leftrightarrow 2640.2	\leftrightarrow 2696.4	\leftrightarrow 2755.1	

Table 12. Natural frequencies and corresponding mode shapes

From Tables 10-12 and from Figure 9, there are evident the dependences of natural frequencies versus fixing length for 528-mm long tubes with different outer diameters at modes from one to six. For each bending mode, it is evident linear dependence, where modal frequencies have increasing tendency with increase in outer diameter. Very interesting is that each torsional mode 4 and extension mode 6 have almost the same values of natural frequencies at different outer diameters like at all previous events.

However, at 15-mm outer tube diameter, bending mode 5 overtakes torsional mode 4 at fixing length of 20-40 mm which has higher natural frequencies and bending mode 7 overtakes extension mode 6 at fixing lengths 20-30 mm (Tab. 10). As well at 25-mm outer tube diameter, extension mode 6 overtakes bending mode 5 at fixing length 60 mm (Tab. 12).

Fig. 9. Natural frequency vs fixing length for 528-mm long tubes with different outer diameters at modes 1-6

Figures 10-12 show natural frequency dependences from the tube length. From these dependences, it is evident, that with increasing length of tube, the modal frequencies decrease.

Fig. 11. Frequency vs length of 20 mm tube outer diameter

Fig. 12. Frequency vs length of 25 mm tube outer diameter

3. CONCLUSION

The results show that natural frequencies:

- − increase with the length of the cylinder and tube fixing on one side (simulating fixation of weapon barrel to weapon case), i.e. that the longer fixing the barrel, the higher natural frequencies are;
- − decrease when the cylinder or tube is longer, i.e. that the longer barrel will be excited at lower natural frequencies than the shorter barrel;
- − increase with larger wall thicknesses of cylinder and tube (barrel) and they are inversely proportional to the cylinder and tube (barrel) lengths;
- − in the investigated range of thicknesses, at the same length and different thicknesses of cylinder and tube (barrel), there are approximately the same in torsional modes 4 and also the same in extension modes 6.

REFERENCES

- [1] Lisý P., Štiavnický M., Modal analysis of barrels for assault rifles, *Problems of Mechatronics. Armament, Aviation, Safety Engineering*, Warsaw, Military University of Technology, vol. 3, no. 2(8), pp. 7-16, 2012.
- [2] Deng S., Sun H. K., Chung-Jung Chiu, Rifles in bore finite element transient analysis, *Proceedings of the International Conference on Mechanical, Production and Materials Engineering (ICMPME 2012)*, June 16-17, 2012, Bangkok, pp. 58-62, 2012.
- [3] Vítek R., Influence of the small arm barrel bore length on the angle of jump dispersion, *Proceedings of the 7th WSEAS International Conference on System Science and Simulation in Engineering* – ICOSSSE '08, Wisconsin, pp. 114-118, 2008.
- [4] Lisý P., Štiavnický M., Weapon barrel and its additional accessories, *Proceedings of the 9th International Armament Conference on Scientific Aspects of Armament & Safety Technology*, Pułtusk, Poland, September 25-28, 2012, pp. 485-497, 2012.
- [5] Jedlicka L., Beer S., Videnka M., Modelling of pressure gradient in the space behind the projectile, *Proceedings of the 7th WSEAS International Conference on System Science and Simulation in Engineering-*ICOSSSE '08, Wisconsin, pp. 100-104, 2008.
- [6] Varmint A., *Barrel Tuner Vibration Analysis*, 2012 http://www.varmital.com/amode.htm.
- [7] Bathe K.J., *Finite Element Procedures*, Pretince-Hall, Inc. 1996.
- [8] *LS DYNA Keyword User´s Manual, Version 971*, Livermore Software Technology Corporation, May 2007.