Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Purpose: The aim of the article was to develop a method for predicting the occurrence of voluntary employee turnover intentions. Design/methodology/approach: The objectives are achieved through the employment of machine learning algorithms, specifically decision tree algorithms, support vector machines, k-nearest neighbors, and naive Bayes classifiers. The article includes a literature review on voluntary employee turnover and the fundamentals of machine learning. It then presents the developed method for predicting employee turnover, which is evaluated under real-world conditions. Findings: The research demonstrates that the proposed machine learning methods can effectively predict voluntary employee turnover intentions. The analysis and results indicate that these predictive models can identify early signs of turnover with significant accuracy, providing valuable insights into employee retention dynamics. Research limitations/implications: (The study's limitations include the potential for overfitting in machine learning models and the need for large, high-quality datasets to train the models. Future research should focus on testing the proposed methods in various organizational settings and exploring additional variables that may influence employee turnover intentions. Practical implications: The practical outcome of this research is the creation of a tool for more effective human resource management, particularly in the context of talent management. Organizations can use this tool to identify employees at risk of leaving and implement targeted retention strategies, ultimately reducing turnover rates and associated costs. Social implications: By reducing voluntary employee turnover, organizations can foster more stable and supportive work environments, contributing to overall employee well-being and job satisfaction. This can enhance public perception of corporate social responsibility and positively influence industry standards. Originality/value: This paper introduces a novel application of machine learning techniques to predict voluntary employee turnover intentions. The findings are valuable to human resource professionals, organizational managers, and scholars in the fields of management and quality sciences, offering a data-driven approach to improving employee retention strategies.
Rocznik
Tom
Strony
263--273
Opis fizyczny
Bibliogr. 29 poz.
Twórcy
autor
- Faculty of Engineering Management, Poznan University of Technology
Bibliografia
- 1. Alsariera, Y.A., Baashar, Y., Alkawsi, G., Mustafa, A., Alkahtani, A.A., Ali, N.A. (2022). Assessment and evaluation of different machine learning algorithms for predicting student performance. Computational Intelligence and Neuroscience.
- 2. Aswale, N., Mukul, K. (2020). Role of data analytics in human resource management for prediction of attrition using job satisfaction. In: Data Management, Analytics and Innovation (pp. 57-67). Singapore: Springer.
- 3. Bills, M.A. (1925). Social status of the clerical work and his permanence on the job. Journal of Applied Psychology, 9, 424-427. http://dx.doi.org/10.1037/h0065881.
- 4. Bolt, E.E.T., Winterton, J., Cafferkey, K. (2022). A century of labour turnover research: A systematic literature review. International Journal of Management Reviews, 24(4), 555-576.
- 5. Cichosz, P. (2007). Systemy uczące się. WNT.
- 6. Diemer, H. (1917). Causes of “turnover” among college faculties. The Annals of the American Academy of Political and Social Science, 71, 216-224.
- 7. Dolot, A. (2019). Przyczyny odchodzenia pracowników z organizacji. Zeszyty Naukowe Uniwersytetu Ekonomicznego w Krakowie [Cracow Review of Economics and Management], 5(977), 129-142.
- 8. Eberle, G.J. (1919). Labor turnover. The American Economic Review, 9, 79-82.
- 9. Holtom, B.C., Mitchell, T.R., Lee, T.W., Inderrieden, E.J. (2005). Shocks as causes of turnover: What they are and how organizations can manage them. Human Resource Management, 44(3), 337-352.
- 10. Hom, P.W., Allen, D.G., Griffeth, R.W. (2020). Employee Retention and Turnover: Why Employees Stay or Leave. New York, NY: Routledge.
- 11. Hom, P.W., Lee, T.W., Shaw, J.D., Hausknecht, J.P. (2017). One hundred years of employee turnover theory and research. Journal of Applied Psychology, 102(3), 530.
- 12. Ingram, T. (2011). Zarządzanie talentami. Teoria dla praktyki zarządzania zasobami ludzkimi. Warszawa: PWE.
- 13. Knap-Stefaniuk, A., Karna, W.J. (2017). Zarządzanie talentami jako wyzwanie w międzynarodowym zarządzaniu zasobami ludzkimi. Perspektywy Kultury, 16(1), 101-120.
- 14. Lee, T.W., Hom, P.W., Eberly, M.B., Junchao (Jason) Li, Mitchell, T.R. (2017). On the next decade of research in voluntary employee turnover. Academy of Management Perspectives, 31(3), 201-221.
- 15. Madigan, D.J., Kim, L.E. (2021). Towards an understanding of teacher attrition: A metaanalysis of burnout, job satisfaction, and teachers’ intentions to quit. Teaching and Teacher Education, 105, 103425.
- 16. March, J.G., Simon, H.A. (1993). Organizations. John Wiley & Sons.
- 17. Miś, A. (2009). Zarządzanie talentami w organizacji. Zeszyty Naukowe, 810. Uniwersytet Ekonomiczny w Krakowie, 39-54.
- 18. Mitchell, T.R., Holtom, B.C., Lee, T.W., Sablynski, C.J., Erez, M. (2001). Why people stay: Using job embeddedness to predict voluntary turnover. Academy of Management Journal, 44, 1102-1121.
- 19. Mobley, W.H., Griffeth, R.W., Hand, H.H., Meglino, B.M. (1979). Review and conceptual analysis of the employee turnover process. Psychological Bulletin, 86, 493-522. http://dx.doi.org/10.1037/0033-2909.86.3.493.
- 20. Moczydłowska, J., Kowalewski, K. (2014). Nowe koncepcje zarządzania ludźmi. Difin.
- 21. Nguyen, Q.H., Ly, H.B., Ho, L.S., Al-Ansari, N., Le, H.V., Tran, V.Q., Prakash, I., Pham, B.T. (2021). Influence of data splitting on performance of machine learning models in prediction of shear strength of soil. Mathematical Problems in Engineering, 1-15.
- 22. Nyberg, A.J., Ployhart, R.E. (2013). Context-emergent turnover (CET) theory: A theory of collective turnover. The Academy of Management Review, 38, 109-131.
- 23. Price, J.L. (1977). The study of turnover. Ames, IA: Iowa State Press.
- 24. Price, J.L., Mueller, C.W. (1986). Absenteeism and turnover of hospital employees. Greenwich, CT: JAI Press.
- 25. Rebala, G., Ravi, A., Churiwala, S. (2019). An introduction to machine learning. Springer.
- 26. Steel, R.P., Ovalle, N.K. (1984). A review and meta-analysis of research on the relationship between behavioral intentions and employee turnover. Journal of Applied Psychology, 69, 673-686.
- 27. Stuss, M.M. (2021). Zarządzanie talentami: koncepcje, modele i praktyki. Wydawnictwo UJ.
- 28. Tett, R.P., Meyer, J.P. (1993). Job satisfaction, organizational commitment, turnover intention, and turnover: Path analysis based on meta-analytic findings. Personnel Psychology, 46, 259-293.
- 29. Wójcik, P. (2017). Shortage of talents-a challenge for modern organizations. International Journal of Synergy and Research, 6.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-85d9b757-633b-481b-9747-8b7ad0fad6a8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.