PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Deviations From Classical Hydrodynamic Theory in Highly Confined Planar Poiseuille Flow of a Polymer Solution

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The behaviour of polymer solutions in highly confined geometries remains a subject of interest in rheology and fluid dynamics. In this paper, we investigate how well the classical hydrodynamic description based on the Navier-Stokes equations, Fourier’s Law and Fick’s Law describes the flow of a highly confined polymer solution. In particular, we examine the effects of depletion of polymer concentration at the wall-fluid interface and strain rate coupling to the heat flux.We present data from molecular dynamics simulations of a model polymer solution in explicit solvent undergoing planar Poiseuille flow for channel widths ranging from around 10 solvent atomic diameters to around 80 solvent atomic diameters. We find that the classical continuum approach works very well for channels wider than 20 solvent atomic diameters. For narrower channels, we observe deviations in the velocity, temperature and concentration profiles due to density oscillations near the walls, the polymer depletion effect, and possible weak strain rate coupling. For the narrowest channel, the wall effects extend to the centre of the channel but the underlying profiles are quite well described by the classical continuum picture. By allowing very long times of order 104 reduced time units for relaxation to the steady state and averaging over very long runs of order 105 reduced time units and 16 independent ensemble members, we are able to conclude that previously reported deviations from the classical continuum predictions (I.K. Snook, P.J. Daivis, T. Kairn, J. Physics-Condensed Matter 20, 404211 (2008)) were probably the result of insufficient equilibration time. Our results are also sufficiently accurate and precise to verify the expected quartic temperature profile predicted by classical hydrodynamic theory, with only a very small deviation which we can attribute to nonlinear coupling of the heat flux vector to the strain rate.
Słowa kluczowe
Twórcy
autor
  • School of Science and Centre for Molecular and Nanoscale Physics RMIT University, GPO Box 2476, Melbourne, Victoria, 3001, Australia
autor
  • School of Science and Centre for Molecular and Nanoscale Physics RMIT University, GPO Box 2476, Melbourne, Victoria, 3001, Australia
autor
  • Department of Mathematics, Faculty of Science, Engineering and Technology Swinburne University of Technology, P.O. Box 218, Hawthorn, Victoria, 3112, Australia
Bibliografia
  • [1] M.D. Graham, Fluid Dynamics of Dissolved Polymer Molecules in Confined Geometries, Annu. Rev. Fluid Mech. 43(1), 273–298 (2011).
  • [2] T. Kairn, Microscopic Simulation of Colloidal Flow in Thin Channels, PhD Thesis, Royal Melbourne Institute of Technology 2005.
  • [3] I.K. Snook, P.J. Daivis, T. Kairn, The flow of colloids and polymers in channels simulated using non-equilibrium molecular dynamics, J. Physics – Condensed Matter 20(40), 404211 (2008).
  • [4] A. Baranyai, D.J. Evans, P.J. Daivis, Isothermal shear-induced heat flow, Phys. Rev. A 46(12), 7593–7600 (1992).
  • [5] G. Atyon, O.G. Jepps, D.J. Evans, On the validity of Fourier’s law in systems with spatially varying strain rates, Mol. Phys. 96(6), 915–920 (1999).
  • [6] B.D. Todd, D.J. Evans, Temperature profile for Poiseuille flow, Phys. Rev. E 55(3), 2800–2807 (1997).
  • [7] S. Hess, M.M. Mansour, Temperature profile of a dilute gas undergoing a plane Poiseuille flow, Physica A 272(3), 481–496 (1999).
  • [8] K.P. Travis, K.E. Gubbins, Poiseuille flow of Lennard-Jones fluids in narrow slit pores, J. Chem. Phys. 112(4), 1984–1994 (2000).
  • [9] H. Ma, M.D. Graham, Theory of shear-induced migration in dilute polymer solutions near solid boundaries, Phys. Fluids 17(8), 1–13 (2005).
  • [10] M.L. Matin, P.J. Daivis, B.D. Todd, Comparison of planar shear flow and planar elongational flow for systems of small molecules, J. Chem. Phys. 113(20), 9122–9131 (2000).
  • [11] T. Kairn, P.J. Daivis, M.L. Matin, I.K. Snook, Concentration dependence of viscometric properties of model short chain polymer solutions, Polymer 45(7), 2453–2464 (2004).
  • [12] T. Kairn, P.J. Daivis, M.L. Matin, I.K. Snook, Effects of concentration on steady-state viscometric properties of short chain polymer solutions over the entire concentration range, Int. J. Thermophys. 25(4), 1075–1084 (2004).
  • [13] J.D. Weeks, D. Chandler, H.C. Andersen, Role of Repulsive Forces in Determining the Equilibrium Structure of Simple Liquids, J. Chem. Phys. 54(12), 5237–5247 (1971).
  • [14] J.E. Jones, On the Determination of Molecular Fields. II. From the Equation of State of a Gas, Proc. R. Soc. A Math. Phys. Eng. Sci. 106(738), 463–477 (1924).
  • [15] B.D. Todd, P.J. Daivis, Nonequilibrium molecular dynamics, Cambridge University Press 2017.
  • [16] C.W. Gear, The Numerical Integration of Ordinary Differential Equations, Math. Comput. 21(98), 146–156 (1967).
  • [17] M.S. Green, Markoff Random Processes and the Statistical Mechanics of Time-Dependent Phenomena. II. Irreversible Processes in Fluids, J. Chem. Phys. 22(3), 398 (1954).
  • [18] R. Kubo, Statistical-mechanical theory of irreversible processes. I. general theory and simple applications to magnetic and conduction problems, J. Phys. Soc. Japan 12(6), 570–586 (1957).
  • [19] P.J. Daivis, Thermodynamic relationships for shearing linear viscoelastic fluids, J. Nonnewton. Fluid Mech. 152(1-3), 120–128 (2008).
  • [20] S.R. De Groot, P. Mazur, Non-equilibrium thermodynamics, Courier Dover Publications 2013.
  • [21] D.J. Evans, G.P. Morriss, Statistical Mechanics of Nonequilbrium Liquids, CUP 2008.
  • [22] P.J. Daivis, B.D. Todd, A simple, direct derivation and proof of the validity of the SLLOD equations of motion for generalized homogeneous flows, J. Chem. Phys. 124, 194103 (2006).
  • [23] A.B. Metzner, Y. Cohen, C. Rangel-Nafaile, Inhomogeneous flows of non-newtonian fluids: generation of spatial concentration gradients, J. Nonnewton. Fluid Mech. 5(C), 449–462 (1979).
  • [24] K.S. Glavatskiy, B.A. Dalton, P.J. Daivis, B.D. Todd, Nonlocal response functions for predicting shear flow of strongly inhomogeneous fluids. I. Sinusoidally driven shear and sinusoidally driven inhomogeneity, Phys. Rev. E 91 062132 (2015).
  • [25] B.A. Dalton, K.S. Glavatskiy, P.J. Daivis, B.D. Todd, Nonlocal response functions for predicting shear flow of strongly inhomogeneous fluids. II. Sinusoidally driven shear and multisinusoidal inhomogeneity, Phys. Rev. E 92 012108 (2015).
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-85d0599b-03ac-475b-aaa3-3eb66f6ffc09
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.