PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Anthropogenic radionuclides 137Cs and 90Sr in the southern Baltic Sea ecosystem

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The radioisotopes of caesium (137Cs) and strontium (90Sr) make the greatest contribution to the radioactivity level due to artificial radionuclides in the Baltic Sea, where the level of 137Cs contamination is higher than in any other part of the world ocean. The main sources of man-made radionuclides are the Chernobyl accident in 1986 and the nuclear weapons tests carried out in the 1950s and 1960s. This study discusses the distribution patterns and trends in activity concentrations of 137Cs and 90Sr recorded in various compartments of the marine environment of the southern Baltic Sea. It is based on an investigation of radioactive substances as part of the Polish National Environmental Monitoring Programme. In 2010 the average concentration of 137Cs in the southern Baltic was 35 Bq m-3, while the level of 90Sr in these waters has remained at much the same level in recent years (ca 8 Bq m-3). The distribution of isotopes in the bottom sediments reflect historical events that can be identified in sediment profiles. The activity concentrations of the caesium isotope are the highest in sediments from the Gulf of Gdansk, whereas the least polluted sediments are found in the Bornholm Basin, in the western part of the southern Baltic. The highest concentrations of 137Cs in benthic plants were measured in the red alga Polysiphonia fucoides: 22.3 Bq kg -1 d.w. in June and 40.4 Bq kg-1 in September. These levels were much higher than those found in the bivalve Mytilus trossulus (7.3 Bqkg-1 d.w.). 137Cs concentrations in fish have decreased in time, reflecting the trends recorded in seawater. In 2010 the respective 137Cs activities in Clupea harengus, Platichthys flesus and Gadus morhua were 4.7, 4.9 and 6.6 Bq kg-1w.w.
Słowa kluczowe
EN
Czasopismo
Rocznik
Strony
485--517
Opis fizyczny
Bibliogr. 47 poz., wykr.
Twórcy
autor
  • Institute of Meteorology and Water Management - National Research Institute, Maritime Branch, Waszyngtona 42, 81-342 Gdynia, Poland
  • Central Laboratory for Radiological Protection, Konwaliowa 7, 03-194 Warsaw, Poland
Bibliografia
  • 1. Anon, 2008, Directive 2008/56/EC of the European Parliament and of the Council of 17 June 2008 establishing a framework for community action in the field of marine environmental policy (Marine Strategy Framework Directive), Off. J. Europ. Union, L 164/19, 19-44.
  • 2. Atwood D.A. (ed.), 2010, Radionuclides in the environment, Wiley, 522 pp.
  • 3. Boisson F., Hutchins D.A., Fowler S.W., Fisher N. S., Teyessie J.-L., 1997, Influence of temperature on the accumulation and retention of 11 radionuclides by marine alga Fucus vesiculosus, Mar. Pollut. Bull., 35 (7-12), 313-327, http://dx.doi.org/10.1016/S0025-326X(97)00092-1.
  • 4. Burger J., Gochfeld M., Kosson D. S., Powers C. W., Jewett S., Friedlander B., Chenelot H., Volz C.D., Jeitner C., 2006, Radionuclides from Amchitka and Kiska Islands in the Aleutians: establishing a baseline for future biomonitoring, J. Environ. Radioact., 91 (1-2), 27-40, http://dx.doi.org/10.1016/j.jenvrad.2006.08.003.
  • 5. Feistel R., Nausch G., Matthäus W., Hagen E., 2003, Temporal and spatial evolution of the Baltic deep water renewal in spring 2003, Oceanologia, 45 (4), 623-642.
  • 6. Grzybowska D., 1989, Concentration of 137Cs and 90Sr in marine fish from the southern Baltic Sea, Acta Hydrobiol., 31, 139-147.
  • 7. HELCOM, 1995, Radioactivity in the Baltic Sea 1984-1991, Baltic Sea Environ. Proc. No. 61, 182 pp.
  • 8. HELCOM, 1997, Manual for marine monitoring in the COMBINE programme of HELCOM, Baltic Mar. Environ. Prot. Commiss., Helsinki, http://www.helcom.fi/groups/monas/CombineManual/en_GB/main/.
  • 9. HELCOM, 2003, Radioactivity in the Baltic Sea 1992-2006, Baltic Sea Environ. Proc. No. 85, 102 pp.
  • 10. HELCOM, 2009, Radioactivity in the Baltic Sea 1999-2006, Baltic Sea Environ. Proc. No. 117, 64 pp.
  • 11. IAEA, 2005, Worldwide marine radioactivity studies (WOMARS): radionuclide levels in oceans and sea, IAEA-TECDOC-1429, IAEA, Vienna 187 pp.
  • 12. IAEA, 2010, HELCOM-MORS proficiency test determination of radionuclides in fish flesh sample, IAEA/AQ/13, 70 pp.
  • 13. Ikaheimonen T.K., Outola I., Vartti V.P., Kotilainen P., 2009, Radioactivity in the Baltic Sea: inventories and temporal trends of 137Cs and 90Sr in water and sediments, J. Radioanal. Nucl. Chem., 282 (2), 419-425, http://dx.doi.org/10.1007/s10967-009-0144-1.
  • 14. Knapińska-Skiba D., Bojanowski R., Piękoś R., 2003, Activity concentration of caesium-137 in seawater and plankton of the Pomeranian Bay (the southern Baltic Sea) before and after flood in 1997, Mar. Pollut. Bull., 46 (2), 1558-1562, http://dx.doi.org/10.1016/S0025-326X(03)00317-5.
  • 15. Knapińska-Skiba D., Bojanowski R., Radecki Z., 1994, Sorption and release of radiocaesium from particulate matter of the Baltic coastal zone, Neth. J. Aquat. Ecol., 28 (3-4), 413-419, http://dx.doi.org/10.1007/BF02334211.
  • 16. Knapińska-Skiba D., Bojanowski R., Radecki Z., Łotocka M., 1995, The biological and physico-chemical uptake of radiocaesium by particulate matter of natural origin (Baltic Sea), Neth. J. Aquat. Ecol., 29 (3-4), 283-290, http://dx.doi.org/10.1007/BF02084226.
  • 17. Knapinska-Skiba D., Bojanowski R., Radecki Z., Millward G.E., 2001, Activity concentrations and fluxes of radiocesium in the southern Baltic Sea, Estuar. Coast. Shelf Sci., 53 (6), 779-786, http://dx.doi.org/10.1006/ecss.2001.0812.
  • 18. Knapińska-Skiba D., Bojanowski R., Piękoś R., 2002, Dissolved and suspended forms of caesium-137 in marine and riverine environments of the southern Baltic ecosystem, Nukleonika, 47 (2), 53-58.
  • 19. Kryshev A. I., Ryabov I.N., 2000, A dynamic model of 137Cs accumulation by fish of different age classes, J. Environ. Radioact., 50 (3), 221-233, http://dx.doi.org/10.1016/S0265-931X(99)00118-6.
  • 20. Littler M.M., Littler D. S., 1980, The evolution of thallus form and survival strategies in benthic marine macroalgae: field and laboratory tests of a functional form model, Amer. Nat., 116 (1), 25-44, http://dx.doi.org/10.1086/283610.
  • 21. Lobban C. S., Harrison P. J., 1997, Seaweed ecology and physiology, Cambridge Univ. Press, New York, 366 pp.
  • 22. Malek M.A., Nakahara M., Nakamura R., 2004, Uptake, retention and organ/tissue distribution of 137Cs by Japanese catfish, J. Environ. Radioact., 77, 191-204, http://dx.doi.org/10.1016/j.jenvrad.2004.03.006.
  • 23. Nielsen S.P., Bengston P., Bojanowski R., Hagel P., Herrmann J., Ilus E., Jakobson E., Motiejunas S., Panteleev Y., Skujina A., Suplinska M., 1999, The radiological exposure of man from radioactivity in the Baltic Sea, Sci. Tot. Environ., 237-238, 133-141, http://dx.doi.org/10.1016/S0048-9697(99)00130-8.
  • 24. Piechura J., Beszczyńska-Möller A., 2004, Inflow waters in the deep regions of the southern Baltic Sea - transport and transformations, Oceanologia, 46 (1), 113-141.
  • 25. Pinder J.E., Hinton T.G., Whicker F.W., 2006, Foliar uptake of cesium from the water column by aquatic macrophytes, J. Environ. Radioact., 85 (1), 23-47, http://dx.doi.org/10.1016/j.jenvrad.2005.05.005.
  • 26. Sawidis T., Heinrich G., Brown M.T., 2003, Cesium-137 concentrations in marine macroalgae from different biotopes in the Aegean Sea (Greece), Ecotox. Environ. Safe., 54 (3), 249-254, http://dx.doi.org/10.1016/S0147-6513(02)00021-0.
  • 27. Smith J.T., Kudelsky A. V., Ryabov I.N., Daire S.E., Boyer L., Blust R. J., Fernandez J.A., Hadderingh R.H., Voitsekhovitch O.V., 2002, Uptake and elimination of radiocaesium in fish and the ‘size effect’, J. Environ. Radioact., 62 (2), 145-164, http://dx.doi.org/10.1016/S0265-931X(01)00157-6.
  • 28. Skwarzec B., 2011, Inflow of radionuclides to the Baltic Sea, [in:] Geochemistry of Baltic Sea surface sediments, S. Uścinowicz (ed.), Pol. Geol. Inst. - Nat. Res. Inst., Warsaw, 355 pp.
  • 29. Suplińska M., 2002, Vertical distribution of 137Cs, 210Pb, 226Ra and 239, 240Pu in bottom sediments from the Southern Baltic Sea in the years 1998-2000, Nukleonika, 47 (2), 45-52.
  • 30. Suplińska M., Grzybowska D., 2000, Monitoring skażeń promieniotwórczych w wybranych składnikach ekosystemu Bałtyku Południowego, Postępy Techniki Jądrowej, 43 (3), 35-44.
  • 31. Suplińska M., Pietrzak-Flis Z., 2008, Sedimentation rates and dating in bottom sediments in the Southern Baltic Sea region, Nukleonika, 53 (Suppl. 2), 105-111.
  • 32. Szefer P., 2002a, Metals, metalloids and radionuclides in the Baltic Sea ecosystem, Tr. Met. Environ., Vol. 5, 1-752.
  • 33. Szefer P., 2002b, Metal pollutants and radionuclides in the Baltic Sea - an overview, Oceanologia, 44 (2), 129-178.
  • 34. Tomczak J., 1988, Radionuclides, [in:] Environmental conditions of the Polish zone of the Baltic Sea in 1987, Inst. Meteorol. Water Manag., Gdynia, 238-245, (in Polish).
  • 35. Tomczak J., 1999, Artificial radionuclides, [in:] Environmental conditions of the Polish zone of the Baltic Sea in 1998, Inst. Meteorol. Water Manag., Gdynia, 170-176, (in Polish).
  • 36. UNSCEAR, 1977, Sources and effects of ionizing radiation, UN, New York.
  • 37. UNSCEAR, 1988, Sources and effects of ionizing radiation, UN, New York.
  • 38. UNSCEAR, 2000, Sources and effects of ionizing radiation, UN, New York.
  • 39. Volchok H. L., Kulp J. L., Eckelmann W.R., Gaetjen I. E., 1957, Determination of 90Sr and 140Ba in bone, dairy products, vegetation and soil, Ann. N. Y. Acad. Sci., 71, 293-304, http://dx.doi.org/10.1111/j.1749-6632.1957.tb54602.x.
  • 40. Zalewska T., 2012a, Seasonal changes of 137Cs in benthic plants from the southern Baltic Sea, J. Radioanal. Nucl. Chem., 292 (1), 211-218, http://dx.doi.org/10.1007/s10967-011-1546-4.
  • 41. Zalewska T., 2012b, Distribution of 137Cs in benthic plants along depth profiles in the outer Puck Bay (Baltic Sea), J. Radioanal. Nucl. Chem., 293 (2), 679-688, http://dx.doi.org/10.1007/s10967-012-1723-0.
  • 42. Zalewska T., Lipska J., 2006, Contamination of the southern Baltic Sea with 137Cs and 90Sr over the period 2000-2004, J. Environ. Radioact., 91 (1-2), 1-14, http://dx.doi.org/10.1016/j.jenvrad.2006.08.001.
  • 43. Zalewska T., Saniewski M., 2011a, Bioaccumulation of 137Cs by benthic plants and macroinvertebrates, Ocean. Hydrobiol. Stud., 40 (3), 1-8, http://dx.doi.org/10.2478/s13545-011-0023-6.
  • 44. Zalewska T., Saniewski M., 2011b, Bioaccumulation of gamma emitting radionuclides in red algae from the Baltic Sea under laboratory conditions, Oceanologia, 53 (2), 631-650, http://dx.doi.org/10.5697/oc.53-2.631.
  • 45. Zalewska T., Saniewski M., 2012, Radionuclides of anthropogenic origin - 137Cs and 90Sr, [in:] Environmental conditions of the Polish zone of the Baltic Sea in 2010, Inst. Meteor. Water Manag., Gdynia, (in Polish).
  • 46. Zalewska T., Suplińska M., 2012, Reference organisms for assessing the impact of ionizing radiation on the environment of the southern Baltic Sea, Ocean. Hydrobiol. Stud., 41 (4), 1-7, http://dx.doi.org/10.2478/s13545-012-0033-z.
  • 47. Zalewska T., Suplińska M., 2013, Fish pollution with anthropogenic 137Cs in the southern Baltic Sea, Chemosphere, 90 (6), http://dx.doi.org/10.1016/j.chemosphere.2012.07.012.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-85c998b7-e71e-46de-bd50-bdab91689cf1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.