PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Biodegradable cement type bone implant materials based on calcium phosphates and calcium sulphate

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Calcium phosphates (CaPs) are widely used in hard tissue replacement because of their excellent biocompatibility. Calcium phosphate cements (CPCs) are an interesting alternative for sintered calcium phosphate ceramics due to their mouldability and self-setting properties which allow them to conform to even the most complex bone defects. However, one of the major limitations of CPCs is their relatively low resorption rate, not optimal for bone regeneration. The aim of our studies was to combine a stable hydroxyapatite with more soluble α-tricalcium phosphate (α-TCP) or calcium sulphate (CS) (resorbability: CS>>α-TCP>HA) to develop biomaterial with gradual degradation. Promising materials for use in minimally invasive surgery for bone defects repair were obtained. It was found that the degradation rate of hydroxyapatite based bone substitutes can be controlled by the addition of an appropriate kind and amount of more soluble constituent. The impact of the setting component (α-TCP or CS) on the physicochemical properties of the final products was confirmed. Furthermore the influence of organic additives (chitosan, methylcellulose, alginate) on the final materials characteristic was proven. Solutions of organic additives, applied as the liquid phases, significantly improved the workability of cement pastes. It has been demonstrated that implant materials based on calcium sulphate and α-TCP differed in their setting times, mechanical strength, dissolution rate and morphologies of apatite layers on their surfaces after soaking in simulated body fluid. The reason of observed differences is a higher susceptibility of calcium sulphate to both disintegration and degradation.
Rocznik
Strony
2--6
Opis fizyczny
Bibliogr. 32 poz., tab., wykr., zdj.
Twórcy
autor
  • AGH University of Science and Technology, Faculty of Materials Science and Ceramics, 30 Mickiewicza Av., 30-059 Krakow, Poland
  • AGH University of Science and Technology, Faculty of Materials Science and Ceramics, 30 Mickiewicza Av., 30-059 Krakow, Poland
autor
  • AGH University of Science and Technology, Faculty of Materials Science and Ceramics, 30 Mickiewicza Av., 30-059 Krakow, Poland
  • AGH University of Science and Technology, Faculty of Materials Science and Ceramics, 30 Mickiewicza Av., 30-059 Krakow, Poland
Bibliografia
  • [1] Dorozhkin S.V., Epple M.: Biological and medical significance of calcium phosphates. Angewandte Chemie International Edition 41 (2002) 3130-3146.
  • [2] Polkowska I., Sobczyńska-Rak A., Szyszkowska A., Koper J., Ślósarczyk A.: Use of hydroxyapatite in the treatment of bone cavities after the removal of inflammatory lesions within the jaws – case reports. Medycyna Weterynaryjna 68[7] (2012) 436-440.
  • [3] Ślósarczyk A., Piekarczyk J.: Ceramic materials on the basis of hydroxyapatite and tricalcium phosphate. Ceramics International 25[6] (1999) 561-565.
  • [4] Wójtowicz J., Leszczyńska J., Chróścicka A., Ślósarczyk A., Paszkiewicz Z., Zima A., Rożniatowski K., Jeleń P., Lewandowska-Szumieł M.: Comparative in vitro study of calcium phosphate ceramics for their potency as scaffolds for tissue engineering, Bio-Medical Materials and Engineering 24 (2014) 1609-1623.
  • [5] Brown W.E., Chow L.C.: A new calcium phosphate water setting cement, In Cements Research Progress, Brown P.W., editor, American Ceramic Society: Westerville, OH, USA (1986) 352-379.
  • [6] Montufar E.B., Traykova T., Gil C., Harr I., Almirall A., Aguirre A., Engel E., Planell J.A., Ginebra M.P.: Foamed surfactant solution as a template for self-setting injectable hydroxyapatite scaffolds for bone regeneration. Acta Biomaterialia 6[3] (2010) 876-885.
  • [7] Ginebra M.P., Espanol M., Montufar E.B., Pereza R.A., Mestres G.: New processing approaches in calcium phosphate cements and their applications in regenerative medicine, Acta Biomaterialia 6[8] (2010) 2863-2873.
  • [8] Frankenburg E.P., Goldstein S.A., Bauer T.W., Harris S.A., Poser R.D.: Biomechanical and histological evaluation of a calcium phosphate cement. The Journal of Bone&Joint Surgery 80[8] (1998) 1112-1124.
  • [9] Jansen J.A., de Ruijter J.E., Schaeken H.G., van der Waerden J.P.C.M., Planell J.A., Driessens F.C.M.: Evaluation of tricalcium phosphate/hydroxyapatite cement for tooth replacement: an experimental animal study. Journal of Materials Science: Materials in Medicine 6 (1995) 653-657.
  • [10] Ooms E.M., Wolke J.G., van der Waerden J.P., Jansen J.A.: Trabecular bone response to injectable calcium phosphate (Ca–P) cement. Journal of biomedical materials research 61 (2002) 9-18.
  • [11] Takagi S., Chow L.C.: Formation of macropores in calcium phosphate cement implants. Journal of Materials Science: Materials in Medicine 12 (2001) 135-139.
  • [12] Xu H.H.K., Weir M.D., Burguera E.F., Fraser A.M.: Injectable and macroporous calcium phosphate cement scaffold. Biomaterials 27 (2006) 4279-4287.
  • [13] Ruhé P.Q., Hedberg E.L., Padron N.T., Spauwen P.H.M., Jansen J.A., Mikos A.G.: Biocompatibility and degradation of poly(dllactic-co-glycolic acid)/calcium phosphate cement composites. Journal of Biomedical Materials Research 74A (2005) 533-544.
  • [14] Khashaba R., Moussa M.M., Mettenburg D.J., Rueggeberg F.A., Chutkan N.B., Borke J.L.: Polymeric-Calcium Phosphate Cement Composites-Material Properties: In Vitro and In Vivo Investigations. International Journal of Biomaterials (2010).
  • [15] Moreau J., Xu H.H.K.: Mesenchymal stem cell proliferation and differentiation on an injectable calcium phosphate – chitosan composite scaffold. Biomaterials 30[14] (2009) 2675-2682.
  • [16] Pere R.A.,, Kim H.W., Ginebra M.P.: Polymeric additives to enhance the functional properties of calcium phosphate, Journal of Tissue Engineering 3[1] (2012) 2041731412439555.
  • [17] Wang X., Ma J., Wang Y., He B.: Structural characterization of phosphorylated chitosan and their applications as effective additives of calcium phosphate cements. Biomaterials 22[16] (2001) 2247-2255.
  • [18] Zhou W., Xue Y., Ji X., Yin G., Zhang N., Ren Y.: A novel injectable and degradable calcium phosphate/calcium sulfate bone cement. African Journal of Biotechnology 10[88] (2011) 19449-19457.
  • [19] Czechowska J., Zima A., Paszkiewicz Z., Lis J., Ślósarczyk A.: Physicochemical properties and biomimetic behaviour of α-TCPchitosan based materials. Ceramics International 40 (2014) 5523-5532.
  • [20] Zima A., Paszkiewicz Z., Siek D., Czechowska J., Ślósarczyk A.: Study on the new bone cement based on calcium sulfate and Mg, CO3 doped hydroxyapatite. Ceramics International 38[6] (2012) 4935-4942.
  • [21] Olkowski R., Kaszczewski P., Czechowska J., Siek D., Pijocha D., Zima A., Ślósarczyk A., Lewandowska-Szumieł M.: Cytocompatibility of the selected calcium phosphate based bone cements: comparative study in human cell culture. Journal of Materials Science: Materials in Medicine. 26[12] (2015) 270.
  • [22] McNeill S.R., Cobb C.M., Rapley J.W., Glaros A.G., Spencer P.: In vivo comparison of synthetic osseous graft materials: a preliminary study. Journal of Clinical Periodontology 26 (1999) 239-245.
  • [23] Strocchi R., Orsini G., Iezzi G., Scarano A., Rubini C., Pecora G., Piattelli A.: Bone regeneration with calcium sulfate: evidence for increased angiogenesis in rabbits. Journal of Oral Implantology 28[6] (2002) 273-278.
  • [24] Orellana BR, Hilt J.Z., Puleo D.A.: Drug release from calcium sulfate-based composites. Journal of Biomedical Materials Research Part B: Applied Biomaterials 103[1] (2014) 135-142.
  • [25] Ślósarczyk A., Paszkiewicz Z., Sposób wytwarzania wysokoreaktywnych proszków fosforanów wapnia, (2005) PL 190 486
  • [26] ASTM C266-04: Standard test method for time setting of hydraulic-cement paste by gillmore needles, ASTM Annual Book of standards, PA 19428-2959, USA.
  • [27] Takadama H., Kokubo T.: In vitro evaluation of bioactivity, In: Bioceramics and their clinical applications, Kokubo T., editor, Cambridge UK: Woodhead Publishing (2008) 165-183.
  • [28] Xue Z., Zhang H., Jin A., Ye J., Ren L., Ao J., Feng W., Lan X.: Correlation between degradation and compressive strength of an injectable macroporous calcium phosphate cement. Journal of Alloys and Compounds 520 (2012) 220-225.
  • [29] Singh N.B., Middendorf B.: Calcium sulphate hemihydrate hydration leading to gypsum crystallization. Progress in Crystal Growth and Characterization of Materials 53[1] (2007) 57-77.
  • [30] Camiré C.L., Gbureck U., Hirsiger W., Bohner M.: Correlating crystallinity and reactivity in an α-tricalcium phosphate. Biomaterials 26[16] (2005) 2787-2794.
  • [31] Durucan C., Brown P.W.: α-Tricalcium phosphate hydrolysis to hydroxyapatite at and near physiological temperature. Journal of Materials Science: Materials in Medicine 11[6] (2000) 365-371.
  • [32] Bartolo PJ.: Virtual and Rapid Manufacturing: Advanced Research in Virtual and Rapid, Taylor&Francis Group, London (2007) 64.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-85c55412-a1e5-468b-836a-2557a0f9bd3d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.