PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modeling of Vibration Behaviors of Turning Machining with the Constant Surface Speed Effect

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Turning machining is a complex process in which many variables can influence the desired results. Among those variables, cutting tool vibration and cutting force greatly affect the precision of the workpiece and the tool life. While the tool vibration and cutting force in feeding are primarily determined by cutting speed, feed rate, and depth of cut as well as the dynamic characteristics of the machining system. This paper presents an analytical modeling approach to investigate the effects of machining conditions based on the governing equation of the machining system. The machining behaviors under different conditions were simulated by Simulink block diagram. Basically, the cutting speed is considered the parameter dominating the vibration behavior and hence is served as the primary input for the simulation. The effectiveness of constant surface speed (CSS mode) or function G96 in the turning process was further examined through comparisons of the variations of vibration and cutting force generated in feeding with different conditions.
Twórcy
  • Graduate Institute of Precision Manufacturing, National Chin-Yi University of Technology, Taiwan
  • Department of Manufacturing Design Engineering Technology, Politeknik Manufaktur Bandung, Indonesia
  • Department of Manufacturing Design Engineering Technology, Politeknik Manufaktur Bandung, Indonesia
autor
  • Graduate Institute of Precision Manufacturing, National Chin-Yi University of Technology, Taiwan
Bibliografia
  • 1. Thomas M., Beauchamp Y., Youssef A.Y., Masounave J. Effect of tool vibrations on surface roughness during lathe dry turning process. Comput Ind Eng. 1996;31(3–4):637–44.
  • 2. Abuthakeer S.S., Kumar G.M. The Effect of Spindle Vibration on Surface Roughness of Workpiece in Dry Turning. Int J Mech Automob Eng. 2011;15(1):31–48.
  • 3. Amin a K.M.N., Patwari A.U., Sharulhazrin M.S., Hafizuddin I. Investigation of Effect of Chatter Amplitude on Surface Roughness during End Milling of Medium Carbon Steel. Int Conf Ind Eng Oper Manag. 2010, 127–31.
  • 4. Abuthakeer S.S., Mohanram P.V., Mohankumar G. The Effect of Spindle Vibration on Surface Roughness of Workspiece in Dry Turning Using Ann. International Journal of Lean Thinking. 2011;42–58.
  • 5. Siddhpura M., Paurobally R. A review of chatter vibration research in turning. Int J Mach Tools Manuf . 2012;61:27–47. DOI: 10.1016/j.ijmachtools.2012.05.007
  • 6. Grossi N., Sallese L., Scippa A., Campatelli G. Chatter stability prediction in milling using speedvarying cutting force coefficients. Procedia CIRP. 2014;14:170–5. DOI: 10.1016/j.procir.2014.03.019
  • 7. Cherukuri H., Perez-Bernabeu E., Selles M., Schmitz T. Machining chatter prediction using a data learning model. J Manuf Mater Process. 2019;3(2).
  • 8. Tangjitsitcharoen S., Pongsathornwiwat N. Development of chatter detection in milling processes. Int J Adv Manuf Technol. 2013;65(5–8):919–27.
  • 9. Aslan D., Altintas Y. On-line chatter detection in milling using drive motor current commands extracted from CNC. Int J Mach Tools Manuf. 2018;132(February):64–80. DOI: 10.1016/j.ijmachtools.2018.04.007
  • 10. Sallese L., Grossi N., Tsahalis J., Scippa A., Campatelli G. Intelligent Fixtures for Active Chatter Control in Milling. Procedia CIRP. 2016;55:176– 81. DOI: 10.1016/j.procir.2016.08.019
  • 11. Li D., Cao H., Shi F., Zhang X., Chen X. Model Predictive Control Based Chatter Suppression in Milling Process via Piezoelectric Stack Actuators. Procedia CIRP. 2018;78:31–6. DOI:10.1016/j.procir.2018.08.308
  • 12. Van Dijk N., Van De Wouw N., Doppenberg E., Oosterling H., Nijmeijer H. Chatter control in the high-speed milling process using μ-synthesis. Proc 2010 Am Control Conf ACC, 2010, 6121–6126.
  • 13. Chauhan S.R., Dass K. Optimization of machining parameters in turning of titanium (Grade-5) alloy using response surface methodology. Mater Manuf Process. 2012;27(5):531–7.
  • 14. Izelu C.O., Eze S.C., Oreko B.U., Edward B.A. Effect of Depth of Cut, Cutting Speed and Workpiece Overhang on Induced Vibration and Surface Roughness in the Turning of 41Cr4 Alloy Steel. Int J Emerg Technol Adv Eng [Internet]. 2008;9001(1):4–9.
  • 15. Das R., Hazarika M. A study on effect of process parameters on vibration of cutting tool in turning operation. J Phys Conf Ser. 2019;1240(1).
  • 16. Okokpujie I.P., Ohunakin O.S., Bolu C.A., Adelekan D.S., Akinlabi E.T. Experimental analysis of the influence of depth of cut, time of cut, and machining speed on vibration frequency during turning of Al1060 alloy. Int J Adv Trends Comput Sci Eng. 2020;9(4):6783–6789.
  • 17. Thomas M., Beauchamp Y. Statistical investigation of modal parameters of cutting tools in dry turning. Int J Mach Tools Manuf. 2003;43(11):1093–106.
  • 18. Abouelatta O.B., Mádl J. Surface roughness prediction based on cutting parameters and tool vibrations in turning operations. J Mater Process Technol. 2001;118(1–3):269–77.
  • 19. CherukuriH.,Perez-BernabeuE.,SellesM.A.,Schmitz T.L. A neural network approach for chatter prediction in turning. Procedia Manuf [Internet]. 2019;34:885– 92. DOI: 10.1016/j.promfg.2019.06.159
  • 20. Kumar S., Singh B. Prediction of tool chatter in turning using RSM and ANN. Mater Today Proc [Internet]. 2018;5(11):23806–15. DOI: 10.1016/j. matpr.2018.10.172
  • 21. Jenkins H. Manufacturing Automation. Robotics and Automation Handbook. 2004.
  • 22. Altintas Y., Eynian M., Onozuka H. Identification of dynamic cutting force coefficients and chatter stability with process damping. CIRP Ann Manuf Technol. 2008;57(1):371–4.
  • 23. Kolhe B.P., Rahane P.S.P., Galhe P.D.S. Prediction and control of Lathe Machine tool vibration – A Review. Ijariie. 2016;(3):153–9.
  • 24. Lacerda H.B., Lima V.T. Evaluation of Cutting Forces and Prediction of Chatter Vibrations in Milling. J Brazilian Soc Mech Sci Eng. 2004;26(1):74–81.
  • 25. Pan G., Xu H., Kwan C.M., Liang C., Haynes L., Geng Z. Modeling and intellligent chatter control strategies for a lathe machine. Control Eng Pract. 1996;4(12):1647–58.
  • 26. Albertelli P., Mussi V., Ravasio C., Monno M. An experimental investigation of the effects of Spindle Speed Variation on tool wear in turning. Procedia CIRP. 2012;4:29–34. DOI: 10.1016/j. procir.2012.10.006
  • 27. Al-Regib E., Ni J., Lee S.H. Programming spindle speed variation for machine tool chatter suppression. Int J Mach Tools Manuf. 2003;43(12):1229–40.
  • 28. Lynch M. The pros and cons of constant surface speed, 12/16/2008. [Online]. Available: https:// www.mmsonline.com/columns/the-pros-and-cons- ofconstant-surface-speed. [Accessed 3 6 2020].
  • 29. G96 G-Code: constant surface speed CNC programming, [Online]. Available: https://www. cnccookbook.com/g96-g-code-constant-surfacespeed-cnc/ Accessed 2 6 2020].
  • 30. Das M.K., Tobias S.A. The relation between the static and the dynamic cutting of metals. Int J Mach Tool Des Res. 1967;7(2):63–89.
  • 31. Dikshit M.K., Puri A.B., Maity A. Chatter and dynamic cutting force prediction in high-speed ball end milling. Mach Sci Technol. 2017;21(2):291– 312. DOI: 10.1080/10910344.2017.1284560
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-85c2d62c-881f-4122-a298-6d6dbe1e0dc4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.