PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

On solving pseudomonotone equilibrium problems via two new extragradient-type methods under convex constraints

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The primary objective of this study is to develop two new proximal-type algorithms for solving equilibrium problems in real Hilbert space. Both new algorithms are analogous to the well-known two-step extragradient algorithm for solving the variational inequality problem in Hilbert spaces. The proposed iterative algorithms use a new step size rule based on local bifunction information instead of the line search technique. Two weak convergence theorems for both algorithms are well-established by letting mild conditions. The main results are used to solve the fixed point and variational inequality problems. Finally, we present several computational experiments to demonstrate the efficiency and effectiveness of the proposed algorithms.
Wydawca
Rocznik
Strony
297--314
Opis fizyczny
Bibliogr. 39 poz., tab., wykr.
Twórcy
  • Mathematics and Computing Science Program, Faculty of Science and Technology, Phetchabun Rajabhat University, Phetchabun 67000, Thailand
  • Mathematics and Computing Science Program, Faculty of Science and Technology, Phetchabun Rajabhat University, Phetchabun 67000, Thailand
  • School of Science, University of Phayao, Phayao 56000, Thailand
Bibliografia
  • [1] I. Konnov, Equilibrium Models and Variational Inequalities, Elsevier B. V., Amsterdam, 2007.
  • [2] G. Bigi, M. Castellani, M. Pappalardo, and M. Passacantando, Nonlinear Programming Techniques for Equilibria, 1st edition, Springer, Cham, 2019.
  • [3] A. A. Cournot, Recherches sur les principes mathématiques de la théorie des richesses, Hachette, Paris, 1838.
  • [4] K. J. Arrow and G. Debreu, Existence of an equilibrium for a competitive economy, Econometrica 22 (1954), no. 3, 265–290, DOI: https://doi.org/10.2307/1907353.
  • [5] J. Nash, Non-cooperative games, Ann. Math. (2) 54 (1951), 286–295, DOI: https://doi.org/10.2307/1969529.
  • [6] J. F. Nash, Equilibrium points in n-person games, Proc. National Academy Sci. 36 (1950), 48–49, DOI: https://doi.org/10.1073/pnas.36.1.48.
  • [7] P. N. Anh, T. V. Thang, and H. Thach, A subgradient proximal method for solving a class of monotone multivalued variational inequality problems, Numer. Algorithms 89 (2022), no. 1, 409–430, DOI: https://doi.org/10.1007/s11075-021-01119-4.
  • [8] P. N. Anh and L. T. H. An, The subgradient extragradient method extended to equilibrium problems, Optimization 64 (2015), no. 2, 225–248, DOI: https://doi.org/10.1080/02331934.2012.745528.
  • [9] P. N. Anh and N. D. Hien, Fixed point solution methods for solving equilibrium problems, Bull. Korean Math. Soc. 51 (2014), no. 2, 479–499, DOI: https://doi.org/10.4134/BKMS.2014.51.2.479.
  • [10] P. N. Anh, T. V. Thang, and H. T. C. Thach, Halpern projection methods for solving pseudomonotone multivalued variational inequalities in Hilbert spaces, Numer. Algorithms 87 (2021), no. 1, 335–363, DOI: https://doi.org/10.1007/s11075-020-00968-9.
  • [11] P. N. Anh and H. A. L. Thi, An Armijo-type method for pseudomonotone equilibrium problems and its applications, J. Global Optim. 57 (2013), no. 3, 803–820, DOI: https://doi.org/10.1007/s10898-012-9970-8.
  • [12] D. V. Hieu, J. J. Strodiot, and L. D. Muu, Strongly convergent algorithms by using new adaptive regularization parameter for equilibrium problems, J. Comput. Appl. Math. 376 (2020), 112844, DOI: https://doi.org/10.1016/j.cam.2020.112844.
  • [13] J. F. Kim, P. N. Anh, and H. G. Hyun, A proximal point-type algorithm for pseudomonotone equilibrium problems, Bull. Korean Math. Soc. 49 (2012), no. 4, 749–759, DOI: https://doi.org/10.4134/BKMS.2012.49.4.749.
  • [14] Y. V. Malitsky and V. V. Semenov, An extragradient algorithm for monotone variational inequalities, Cybernet. Systems Anal. 50 (2014), no. 2, 271–277, DOI: https://doi.org/10.1007/s10559-014-9614-8.
  • [15] K. Muangchoo, H. U. Rehman, and P. Kumam, Two strongly convergent methods governed by pseudo-monotone bi-function in a real Hilbert space with applications, J. Appl. Math. Comput. 67 (2021), no. 1–2, 891–917, DOI: https://doi.org/10.1007/s12190-020-01470-0.
  • [16] D. A. Nomirovskii, B. V. Rublyov, and V. V. Semenov, Convergence of two-stage method with Bregman divergence for solving variational inequalities∗, Cybern. Syst. Anal. 55 (2019), no. 3, 359–368, DOI: https://doi.org/10.1007/s10559-019-00142-7.
  • [17] T. D. Quoc, P. N. Anh, and L. D. Muu, Dual extragradient algorithms extended to equilibrium problems, J. Global Optim. 52 (2011), no. 1, 139–159, DOI: https://doi.org/10.1007/s10898-011-9693-2.
  • [18] H. U. Rehman, P. Kumam, Q. L. Dong, P. Yu, and W. Deebani, A new Popov’s subgradient extragradient method for two classes of equilibrium programming in a real Hilbert space, Optimization 70 (2021), no. 12, 2675–2710, DOI: https://doi.org/10.1080/02331934.2020.1797026.
  • [19] H. U. Rehman, A. Gibali, P. Kumam, and K. Sitthithakerngkiet, Two new extragradient methods for solving equilibrium problems, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. (RACSAM) 115 (2021), no. 2, 75, DOI: https://doi.org/10.1007/s13398-021-01017-3.
  • [20] H. U. Rehman, P. Kumam, A. B. Abubakar, and Y. J. Cho, The extragradient algorithm with inertial effects extended to equilibrium problems, Comput. Appl. Math. 39 (2020), no. 2, 100, DOI: https://doi.org/10.1007/s40314-020-1093-0.
  • [21] H. U. Rehman, P. Kumam, I. K. Argyros, W. Deebani, and W. Kumam, Inertial extra-gradient method for solving a family of strongly pseudomonotone equilibrium problems in real Hilbert spaces with application in variational inequality problem, Symmetry 12 (2020), no. 4, 503, DOI: https://doi.org/10.3390/sym12040503.
  • [22] H. U. Rehman, P. Kumam, Y. J. Cho, and P. Yordsorn, Weak convergence of explicit extragradient algorithms for solving equilibrium problems, J. Inequal. Appl. 2019 (2019), 282, DOI: https://doi.org/10.1186/s13660-019-2233-1.
  • [23] Y. I. Vedel, G. Sandrakov, and V. Semenov, An adaptive two-stage proximal algorithm for equilibrium problems in Hadamard spaces, Cybernetics Syst. Anal. 56 (2020), no. 6, 978–989, DOI: https://doi.org/10.15407/dopovidi2020.02.007.
  • [24] L. Muu and W. Oettli, Convergence of an adaptive penalty scheme for finding constrained equilibria, Nonlinear Anal. 18 (1992), no. 12, 1159–1166, DOI: https://doi.org/10.1016/0362-546X(92)90159-C.
  • [25] E. Blum and W. Oettli, From optimization and variational inequalities to equilibrium problems, Math. Student 63 (1994), 123–145.
  • [26] G. Korpelevich, The extragradient method for finding saddle points and other problems, Èkonom. i Mat. Metody 12 (1976), no. 4, 747–756.
  • [27] S. D. Flåm and A. S. Antipin, Equilibrium programming using proximal-like algorithms, Math. Programm. 78 (1997), no. 1, 29–41, DOI: https://doi.org/10.1007/BF02614504.
  • [28] D. Q. Tran, M. L. Dung, and V. H. Nguyen, Extragradient algorithms extended to equilibrium problems, Optimization 57 (2008), no. 6, 749–776, DOI: https://doi.org/10.1080/02331930601122876.
  • [29] S. I. Lyashko and V. V. Semenov, A new two-step proximal algorithm of solving the problem of equilibrium programming, in: Optimization and its Applications in Control and Data Sciences, vol. 315, 2016, pp. 315–325.
  • [30] L. D. Popov, A modification of the Arrow-Hurwicz method for search of saddle points, Math. Notes Academy Sci. USSR 28 (1980), no. 5, 845–848, DOI: https://doi.org/10.1007/BF01141092.
  • [31] Y. Censor, A. Gibali, and S. Reich, The subgradient extragradient method for solving variational inequalities in Hilbert space, J. Optim. Theory Appl. 148 (2011), no. 2, 318–335, DOI: https://doi.org/10.1007/s10957-010-9757-3.
  • [32] H. H. Bauschke and P. L. Combettes, Convex Analysis and Monotone Operator Theory in Hilbert Spaces, 2nd edition, Springer, Cham, 2017.
  • [33] J. V. Tiel, Convex Analysis: An Introductory Text, 1 edition, Wiley, New York, 1984.
  • [34] Z. Opial, Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Amer. Math. Soc. 73 (1967), 591–598, DOI: https://doi.org/10.1090/S0002-9904-1967-11761-0.
  • [35] K. Tan and H. K. Xu, Approximating fixed points of nonexpansive mappings by the Ishikawa iteration process, J. Math. Anal. Appl. 178 (1993), no. 2, 301–308, DOI: https://doi.org/10.1006/jmaa.1993.1309.
  • [36] M. Bianchi and S. Schaible, Generalized monotone bifunctions and equilibrium problems, J. Optim. Theory Appl. 90 (1996), no. 1, 31–43, DOI: https://doi.org/10.1007/BF02192244.
  • [37] G. Mastroeni, On auxiliary principle for equilibrium problems, in: P. Daniele, F. Giannessi, A. Maugeri (eds), Equilibrium problems and variational models, nonconvex optimization and its applications, vol. 68, Springer, Boston, MA, 2003, pp. 289–298, DOI: https://doi.org/10.1007/978-1-4613-0239-1_15.
  • [38] F. E. Browder and W. Petryshyn, Construction of fixed points of nonlinear mappings in Hilbert space, J. Math. Anal. Appl. 20 (1967), no. 2, 197–228, DOI: https://doi.org/10.1016/0022-247X(67)90085-6.
  • [39] S. Wang, Y. Zhang, P. Ping, Y. J. Cho, and H. Guo, New extragradient methods with non-convex combination for pseudomonotone equilibrium problems with applications in Hilbert spaces, Filomat 33 (2019), no. 6, 1677–1693, DOI: https://doi.org/10.2298/fil1906677w.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-85bd9b82-deee-42b1-af34-337758ed8200
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.