PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The colour difference of transparent surface finish on hydrothermally treated beech wood in the interior

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The colour difference of transparent surface finish on hydrothermally treated beech wood in the interior. The paper deals with the influence of ageing of transparent surface finish in the dark and in the light in interior conditions. The colour difference of the tested samples with surface finishes (∆E* ab) was measured after the ageing of native wood and hydrothermally modified wood in the dark and in the light. In the experiment, European beech wood was hydrothermally treated at a temperature of 135 °C under saturated water vapour for 6 hours. Three different types of surface finishes (acrylic-polyurethane, polyacrylic and aldehyde resin, alkyd resin) were applied on the wood surfaces. The colour parameters of the surfaces in the system CIE L*a *b * , chroma ΔC* , and hue angle Δh° were measured immediately after surface finishing and after the ageing in the dark and in the light. The samples were placed behind windows glass in the interior for 60 days. The results of the colour difference ∆E * ab showed that the colour of wood and the colour of the surface finishes was changed after ageing in the dark as well as in the light. The colour difference ∆E * ab was bigger in the light than in the dark. The colour difference was bigger on native wood than on hydrothermally modified wood.
PL
Różnica w kolorze przezroczystego wykończenia powierzchni drewna bukowego poddanego obróbce hydrotermicznej we wnętrzu. Artykuł dotyczy wpływu starzenia przezroczystego wykończenia powierzchni w ciemności i w świetle w warunkach wewnętrznych. Różnica koloru badanych próbek z wykończeniem powierzchni (∆E*ab) została zmierzona po starzeniu drewna rodzimego i drewna modyfikowanego hydrotermicznie w ciemności i w świetle. W eksperymencie europejskie drewno bukowe poddano obróbce hydrotermicznej w temperaturze 135 °C w warunkach nasyconej pary wodnej przez 6 godzin. Na powierzchnie drewna nałożono trzy różne rodzaje wykończeń powierzchni (akrylowo-poliuretanowe, poliakrylowe i żywice aldehydowe, żywice alkidowe). Parametry barwy powierzchni w systemie CIE L*a*b*, chroma ΔC* i kąt barwy Δh° zostały zmierzone bezpośrednio po wykończeniu powierzchni i po starzeniu w ciemności i w świetle. Próbki umieszczono za szybą okienną we wnętrzu na 60 dni. Wyniki różnicy kolorów ∆E*ab wykazały, że kolor drewna i kolor wykończenia powierzchni zmienił się po starzeniu w ciemności i w świetle. Różnica koloru ∆E*ab była większa w świetle niż w ciemności. Różnica koloru była większa na drewnie rodzimym niż na drewnie modyfikowanym hydrotermiczne.
Słowa kluczowe
Twórcy
  • Technical University in Zvolen, Faculty of Wood Sciences and Technology, Department of Wood Technology, Department of Furniture and Wood Products, T.G. Masaryka 24, Zvolen, SK 960 01, Slovakia
  • Technical University in Zvolen, Faculty of Wood Sciences and Technology, Department of Wood Technology, Department of Furniture and Wood Products, T.G. Masaryka 24, Zvolen, SK 960 01, Slovakia
  • Technical University in Zvolen, Faculty of Wood Sciences and Technology, Department of Wood Technology, Department of Furniture and Wood Products, T.G. Masaryka 24, Zvolen, SK 960 01, Slovakia
Bibliografia
  • 1. ALLEGRETTI, O., TRAVAN, L., CIVIDINI, R. 2009. Drying techniques to obtain white beech. In Proceedings of EDG Conference, 23, 7–13.
  • 2. BAAR, J., GRYC, V., 2011. The analysis of tropical wood discoloration caused by simulated sunlight. Europen Journal of wood and Wood Products 70(1–3), 263–269.
  • 3. CIRULE, D.; SANSONETTI, E.; ANDERSONE, I.; KUKA, E.; ANDERSONS, B. 2021.Enhancing thermally modified wood stability against discoloration. Coatings, 11, 81.
  • 4. DENES, L., LANG, E.M., 2013. Photodegradation of heat-treated hardwood veneers. Journal of Photochemistry and Photobiology B: Biology 118: 9–15.
  • 5. DUDIAK, M., DZURENDA, L. 2023. The effect of sunlight on the color change of steamed birch wood. Acta Facultatis Xylologiae Zvolen, 65(1), 35–44.
  • 6. DUDIAK, M.; DZURENDA, L.; KUČEROVÁ, V. 2022. Effect of Sunlight on The Change in Color of Unsteamed and Steamed Beech Wood with Water Steam. Polymers, 14 1697.96
  • 7. DUDIAK, M.; DZURENDA, L. 2021. Changes in the physical and chemical properties of alder wood in the process of thermal treatment with saturated water steam. Coatings, 11, 898.
  • 8. DUDIAK, M. 2021. Modification of maple wood colour during the process of thermal treatment with saturated water steam. Acta Facultatis Xylologiae Zvolen, 63, 25–34.
  • 9. DZURENDA, L., DUDIAK, M., VÝBOHOVÁ, E. 2022. Influence of UV radiation on the color change of the surface of steamed maple wood with saturated water steam. Polymers 2022, 14(1), 217.
  • 10. DZURENDA, L., DUDIAK, M. 2020. Changes in wood tree species Fagus sylvatica L. and characteristics of the thermal process of modifying its color with saturated water steam. Appl. Ecol. Environ. Res., 5, 142–156.
  • 11. DZURENDA, L., GEFFERT, A., GEFFERTOVÁ, J., DUDIAK, M. 2020. Evaluation of the process thermal treatment of maple wood saturated water steam in terms of change of pH and color of wood. BioResources,15, 2550–2559.
  • 12. GANDELOVÁ, L., HORÁČEK., P., ŠLEZINGEROVÁ, J., 2009. The science of wood. Mendel University of Agriculture and Forestry in Brno. 176 p.
  • 13. GEFFERT, A., GEFFERTOVÁ, J., VÝBOHOVÁ, E., DUDIAK, M. 2020. Impact of steaming mode on chemical characteristics and color of birch wood. Forests, 11, 478.
  • 14. GEFFERTOVÁ, J., GEFFERT, A., VYBOHOVÁ, E., 2018. The effect of UV irradiation on the colour change of the spruce wood. Acta Facultatis Xylologiae Zvolen 60(1), 41–50.
  • 15. HERRERA, R., SANDAK, J., ROBLES, E., KRYSTOFIAK, T., LABIDI, J., 2018. Weathering resistance of thermally modified wood finished with coatings of diverse formulations. Progress in Organic Coatings, 119, 145–154.
  • 16. HON, D.S.N., SHIRAISHI, N. 2001. Weathering and photochemistry in wood. Wood and cellulosic chemistry. 2nd edition. New York: Marcel Dekker, 513–546.
  • 17. CHANG, T. C., CHANG H. T., CHANG S. T. 2010. Influences of extractives on the photodegradation of wood. Polymer Degradation and Stability, 95: 516–521.
  • 18. KMINIAK, R., ORLOWSKI, K.A., DZURENDA, L., CHUCHALA, D., BANSKI, A. 2020 Effect of thermal treatment of birch wood by saturated water vapor on granulometric composition of chips from sawing and milling processes from the point of view of its processing to composites. App. Sci., 10.21: 7545.
  • 19. KUČEROVÁ V., LAGAŇA R., HÝROŠOVÁ T. 2019. Changes in chemical and optical properties of silver fir (Abies alba L.) wood due to thermal treatment. Journal ofWood Science, 65, 1–10.
  • 20. KÚDELA, J., SIKORA, A., SVOCÁK, J. 2020. Colour stability of spruce wood surface coated with a polyurethane lacquer without and with a UV absorber admixture. In XIII: Konference Pigmenty a Pojiva: sbornik/Conference Preceedings; Chemagazín: Pardubice, Czech Republic, pp. 28–30, ISBN 978-80-906269-5-9.
  • 21. KÚDELA, J. 2017. Accelerated ageing-induced effects on surface properties of wood veneers treated with a modified water-based coating system. Ann. WULS-SGGW, Forestry and Wood Technology, 98, 59–65.
  • 22. KÚDELA, J., KUBOVSKÝ, I. 2016. Accelerated-ageing-induced photo-degradation of beech wood surface treated with selected coating materials. Acta Facultatis Xylologiae Zvolen, 58(2), 27–36.
  • 23. LEE S.H., ASHAARI Z., LUM W.C., HALIP J.A., ANG A.F., TAN L.P., CHIN K.L., TAHIR, P.M. 2018. Thermal treatment of wood using vegetable oils: A review. Construction and Building Materials, 181, 408−419. 97
  • 24. LIU, X., TIMAR, M. C., VARODI, A. M., NEDELCU, R., TORCĂTORU, M. J. 2022. Colour and surface chemistry changes of wood surfaces coated with two types of waxes after seven years exposure to natural light in indoor conditions. Coatings, 12(11), 1689.
  • 25. LIU, R., ZHU, H., LI, K., YANG, Z. 2019. Comparison on the aging of woods exposed to natural sunlight and artificial Xenon Light. Polymers, 11, 709.
  • 26. NOWROUZI, Z., MOHEBBY, B., EBRAHIMI, M. PETRIČ, M., 2021. Effects of different additives in a waterborne polyacrylate coating on selected surface properties of heat-treated finished wood. Drewno: prace naukowe, doniesienia, komunikaty, 64.
  • 27. PENG, Y., WANG, Y., CHEN, P., WANG, W. CAO, J., 2020. Enhancing weathering resistance of wood by using bark extractives as natural photostabilizers in polyurethane acrylate coating. Progress in Organic Coatings, 145, p.105665.
  • 28. PERSZE, L., TOLVAJ, L. 2012. Photodegradation of wood at elevated temperature: Colour change. Journal of Photochemistry and Photobiology B: Biology 108, 44–47.
  • 29. REINPRECHT, L., TIŇO, R., ŠOMŠÁK, M. 2020. The impact of fungicides, plasma, UV-additives and weathering on the adhesion strength of acrylic and alkyd coatings to the Norway spruce wood. Coatings, 10, 1111.
  • 30. REINPRECHT, L. 2008. Wood protection. Technical University in Zvolen, 450 p.
  • 31. SALCĂ, E.A., CISMARU, I. 2011. Colour changes evaluation of freshly cut alder veneers under the influence of indoor sunlight. Pro Ligno, 7, 15–24.
  • 32. SALLA, J., PANDEY, K.K., SRINIVAS, K. 2012. Improvement of UV resistance of wood surfaces by using ZnO nanoparticles. Polymer Degradation and Stability, 97, 592–596.
  • 33. SANDBERG D., KUTNAR A., MANTANIS G. 2017. Wood modification technologies-a review. i-Forest, 10, 895−908.
  • 34. SANDBERG, D., KUTNAR, A., KARLSSON, O., JONES, D. 2021. Wood Modification Technologies: Principles, Sustainability, and the Need for Inno-vation, 1st ed.; CRC Press, Taylor and Francis Ltd.: Abingdon, UK, 450p; ISBN 978-1-138-49177-9.
  • 35. SEDLIAČIKOVÁ, M., ALÁČ, P., MORESOVÁ, M. SEDLIAČIK, I., 2021. Mapping the wood colour preferences among potential customers. Acta Facultatis Xylologiae Zvolen, 63(2),163–173.
  • 36. SLABEJOVÁ, G.; VIDHOLDOVÁ, Z.; ŠMIDRIAKOVÁ, M. 2023. Change in the colour of transparent surface finish on hydrothermally treated wood. Acta Facultatis Xylologiae Zvolen, 65(1), pp.45-56.
  • 37. SLABEJOVÁ, G.; ŠMIDRIAKOVÁ, M. 2021. Colour stability of surface finishes on thermally modified beech wood. Annals of Warsaw University of Life Sciences -SGGW. Forestry and wood technology. 114, 116–124.
  • 38. SLABEJOVÁ, G.; ŠMIDRIAKOVÁ, M. 2020. Colour of thermally modified wood finished with transparent coatings. Chip and Chipless Woodworking Processes, 12, 97–102.
  • 39. ŠIMŮNKOVÁ, K., PÁNEK, M. ZEIDLER, A., 2018. Comparison of selected properties of shellac varnish for restoration and polyurethane varnish for reconstruction of historical artefacts. Coatings, 8(4), p.119.
  • 40. TIMAR, M.C., VARODI, A.M., HACIBEKTASOGLU, M., CAMPEAN, M. 2016a. Color and FT-IR analysis of chemical changes in beech wood (Fagus sylvatica L.) after light steaming and heat treatment in two different environments. BioResources, 11, 8325–8343.
  • 41. TIMAR, M. C., VARODI, A. M., GURĂU, L. 2016b. Comparative study of photodegradation of six wood species after short-time UV exposure. Wood science and technology 2016, 50, pp. 135–163.98
  • 42. TOLVAJ, L., MITSUI, K. 2010. Correlation between hue angle and lightness of light irradiated wood. Polymer Degradation and Stabilisation, 95, 638–642.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-85ba510c-ee2e-48b2-bf63-718cf735cab8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.