Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
An environmental risk assessment related to the genetically modified crops still needs to be studied. In the non-target organisms, rove beetles seem to be well-chosen arthropods for this purpose. Rove beetle abundance and species diversity were studied in the first large-scale Bt-maize experiment in the south part of Poland for over two years to determine the impact of Bt-maize in comparison to conventional varieties. A genetically engineered Bt-maize variety (DKC 3421 Yield Gard®, event MON 810) and its near-isogenic DKC 3420 were cultivated at two locations. Additionally, two non-Bt varieties sprayed with a lambda-cyhalothrin insecticide were also included for comparative analysis. The results show no significant effects on rove beetle abundance and diversity patterns of the Bt-maize and the nearby isolines. In one locality the mean number of individuals and Simpson dominance was even higher in Bt-maize compared to one reference variety. The Canonical Correspondence Analysis showed rather variety-dependent effects of the rove beetle community. To conclude, considering the abundance and diversity of studied insects, there is no environmental risk arising from Bt-maize cultivation.
Czasopismo
Rocznik
Tom
Strony
257--266
Opis fizyczny
Bibliogr. 29 poz., rys., tab., wykr.
Twórcy
autor
- Department of Plant Protection, Wrocław University of Environmental and Life Sciences, pl. Grunwaldzki 24a, 50-363 Wrocław, Poland, phone +48 71 320 17 54
autor
- Department of Plant Protection, Wrocław University of Environmental and Life Sciences, pl. Grunwaldzki 24a, 50-363 Wrocław, Poland, phone +48 71 320 17 54
autor
- Institute of Plant Protection - National Research Institute, ul. M. Langiewicza 28, 35-101 Rzeszów, Poland
autor
- Department of Plant Protection, Wrocław University of Environmental and Life Sciences, pl. Grunwaldzki 24a, 50-363 Wrocław, Poland, phone +48 71 320 17 54
autor
- Department of Plant Protection, Wrocław University of Environmental and Life Sciences, pl. Grunwaldzki 24a, 50-363 Wrocław, Poland, phone +48 71 320 17 54
Bibliografia
- [1] Naranjo SE. Impacts of Bt crops on non-target invertebrates and insecticide use patterns. CAB Reviews: Perspective in Agriculture, Veterinary Science, Nutrition and Natural Resources. 2009;11:1-23. DOI: 10.1079/PAVSNNR20094011.
- [2] Hilbeck A, Meier M, Römbke J, Jänsch J, Teichmann H, Tappeser B. Environmental risk assessment of genetically modified plants - concepts and controversies. Environ Sci Eur. 2011;23:1-13. DOI: 10.1186/2190-4715-23-13.
- [3] Devos Y, Sanctis G, Neri FM, Messéan A. EFSA is working to advance the environmental risk assessment of genetically modified crops to better protect butterflies and moths. EFSA J. 2021;19:e0190301. DOI: 10.2903/j.efsa.2021.e190301.
- [4] Twardowski J, Bereś P, Hurej M, Klukowski Z. The quantitative changes of ground beetles (Col., Carabidae) in BT and conventional maize crop in southern Poland. J Plant Prot Res. 2012;52:404-9. DOI: 10.2478/v10045-012-0066-8.
- [5] Bereś PK. Harmfulness of Ostrinia nubilalis Hbn. on some not-Bt versus genetically modified Bt maize (Zea mays L.) cultivars in Poland in 2006-2007. J Plant Prot Res. 2010;50:110-6. DOI: 10.2478/v10045-010-0019-z.
- [6] Brookes G. Twenty-one years of using insect resistant (GM) maize in Spain and Portugal: farm-level economic and environmental contributions. GM Crops Food. 2019;10:90-101. DOI: 10.1080/21645698.2019.1614393.
- [7] ISAAA. Global Status of Commercialized Biotech/GM Crops in 2017: Biotech Crop Adoption Surges as Economic Benefits Accumulate in 22 Years. ISAAA Brief No. 53. New York: ISAAA: Ithaca; 2017. ISBN: 9781892456672.
- [8] Skoková Habuštová O, Doležal P, Spitzer L, Svobodová Z, Hussein H Sehnal F. Impact of Cry1Ab toxin expression on the non-target insects dwelling on maize plants. J Appl Entomol. 2015;138:164-72. DOI: 10.1111/jen.12004.
- [9] Twardowski J, Bereś P, Hurej M, Klukowski Z, Warzecha R. Effects of maize expressing the insecticidal protein cry1ab on non-target ground beetles assemblages. Rom Agric Res. 2017;34:351-61. Available from: https://www.incda-fundulea.ro/rar/nr34/rar34.39.pdf.
- [10] Čerevková, A, Miklisová S, Szoboszlay M, Tebbe CC, Cagáň, Ľ. The responses of soil nematode communities to Bt maize cultivation at four field sites across Europe. Soil Biol Biochem. 2018;119:194-202. DOI: 10.1016/j.soilbio.2018.01.023.
- [11] Birken EM, Cloyd RA. Food preference of the rove beetle, Atheta coriaria Kraatz (Coleoptera: Staphylinidae) under laboratory conditions. Insect Sci. 2007;14:53-6. DOI: 10.1111/j.1744-7917.2007.00125.x.
- [12] Szujecki A. Kusakowate - Staphylinidae. Podrodzina: Skorogonki - Tachyporinae. Klucze do oznaczania owadów Polski, Chrząszcze - Coleoptera, XIX. [Row beetles - Staphylinidae. Subfamily: - Tachyporinae. Keys for recognizing insects of Poland, Beetles - Coleoptera, XIX] Wrocław. Poland: Polskie Towarzystwo Entomologiczne; 2013. ISBN: 9788361764403; 8361764402.
- [13] Szujecki A. Kusakowate - Staphylinidae. Wstęp oraz podrodziny: Micropeplinae, Piestinae, Osoriinae, Pseudopsiinae, Phloeocharinae, Olisthaerinae, Proteininae, Omaliinae, Oxytelinae, Oxyporinae. Klucze do oznaczania owadów Polski, Chrząszcze - Coleoptera, XIX. [Introduction and subfamilies: Micropeplinae, Piestinae, Osoriinae, Pseudopsiinae, Phloeocharinae, Olisthaerinae, Proteininae, Omaliinae, Oxytelinae, Oxyporinae. Keys for recognizing insects of Poland, Beetles - Coleoptera,]. Toruń. Poland: Polskie Towarzystwo Entomologiczne; 2008. ISBN: 9788361607205; 836160720X.
- [14] Icoz I, Stotzky G. Fate and effects of insect-resistant Bt crops in soil ecosystems. Soil Biol Biochem. 2008;40:559-86. DOI: 10.1016/j.soilbio.2007.11.00215.
- [15] Baumgarte S, Tebbe CC. Effects of transgenic corn and Cry1Ab protein on the nematode, Caenorhabditis elegans. Molecular Ecol. 2005;14(8):2539-51. DOI: 10.1111/j.1365-294X.2005.02592.x.
- [16] Skoková Habuštová O, Svobodová Z, Spitzer L, Spitzer P, Doležal HM, Hussein HM, Sehnal F. Communities of ground-dwelling arthropods in conventional and transgenic maize: background data for the post-market environmental monitoring. J Appl Entomol. 2015;139:31-45. DOI: 10.1111/jen.12161.
- [17] Priesnitz KU, Benker UI, Schaarschmidt FJ. Assessment of the potential impact of a Bt maize hybrid expressing Cry3Bb1 on ground beetles (Carabidae). J Plant Dis Protect. 2013;120:131-40. DOI: 10.1007/BF03356464.
- [18] Wolfenbarger LL, Naranjo SE, Lundgren JG, Bitzer RJ, Watrud LS. Bt crop effects on functional guilds of non-target arthropods: A meta-analysis. PLoS ONE. 2008;3(5):e2118. DOI: 10.1371/journal.pone.0002118.
- [19] Resende DCh, Mendes SM, Marucci RC, de Carvahlo SA, Campanha MM, Waquil JM. Rev. Does Bt maize cultivation affect the non-target insect community in the agro ecosystem? Bras Entomol. 2016;60:82-93. DOI: 10.1016/j.rbe.2015.12.001.
- [20] Pálinkás Z, Zalai M, Szénási M, Kádár F, Dorner Z, Balog A. Rove beetles (Coleoptera Staphylinidae) - Their abundance and competition with other predatory groups in Bt maize expressing Cry34Ab1, Cry35Ab1, Cry1F and CP4 EPSPS proteins. Crop Prot. 2016;80:87-93. DOI: 10.1016/j.cropro.2015.11.001.
- [21] Pálinkás Z, Kiss J, Zalai M, Szénási A, Dorner Z, North S, Woodward G, Balog A. Effects of genetically modified maize events expressing Cry34Ab1, Cry35Ab1, Cry1F, and CP4 EPSPS proteins on arthropod complex food webs. Ecol Evol. 2017;7:2286-93. DOI: 10.1002/ece3.2848.
- [22] Balog A, Kiss J, Szekeres D, Szénási Á, Marko V. Rove beetle (Coleoptera: Staphylinidae) communities in transgenic Bt (MON810) and near isogenic maize. Crop Prot. 2010;29:567-71. DOI: 10.1016/j.cropro.2009.12.020.
- [23] Balog A, Szénási Á, Szekeres D, Pálinkás Z. Analysis of soil dwelling rove beetles (Coleoptera: Staphylinidae) in cultivated maize fields containing the Bt toxins, Cry34/35Ab1 and Cry1F×Cry34/35Ab1. Biocontrol Sci Techn. 2011;21:293-7. DOI: 10.1080/09583157.2010.545104.
- [24] Farinós GP, la Poza M, Hernández-Crespo P, Castañera FOP. Diversity and seasonal phenology of aboveground arthropods in conventional and transgenic maize crops in Central Spain. Biol Control. 2008;44: 361-71. DOI: 10.1016/j.biocontrol.2007.11.007.
- [25] Svobodová Z, Skoková Habuštová O, Bohac J, Sehnal F. Functional diversity of staphylinid beetles (Coleoptera: Staphylinidae) in maize fields: testing the possible effect of genetically modified, insect resistant maize. Bull Entomol Res. 2016;106:432-45. DOI: 10.1017/S000748531500111X.
- [26] García M, Ortego F, Castañera P, Farinós GP. Assessment of prey-mediated effects of the coleopteran-specific toxin Cry3Bb1 on the generalist predator Atheta coriaria (Coleoptera: Staphylinidae). Bull Entomol Res. 2012;102:293-302. DOI: 10.1017/S0007485311000666.
- [27] García M, Ortego F, Castañera P, Farinós GP. Effects of exposure to the toxin Cry1Ab through Bt maize fed-prey on the performance and digestive physiology of the predatory rove beetle Atheta coriaria. Biol Control. 2010;55:225-33. DOI: 10.1016/j.biocontrol.2010.08.002.
- [28] Guo M, Wang Z, Cai W, Hua H, Zhao J. Safety assessment of transgenic Cry2Aa rice to a generalist predator, Paederus fuscipes Curtis (Coleoptera: Staphylinidae). Ecotoxicol Environ Safety. 2020;200:110719. DOI: 10.1016/j.ecoenv.2020.110719.
- [29] Amin MR, Oh SD, Suh SJ. Comparing the effects of GM and non-GM soybean varieties on non-target arthropods. Entomol Res. 2020;50:423-32. DOI: 10.1111/1748-5967.12461.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-85b6293d-d813-4197-b999-ed572f44a1f8