PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Investigating the coupling effects of momentum wake-buoyancy jets in thermohaline stratification: a simulation study

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study analyses the impact of varying temperature and salinity stratifications on the thermal characteristics of the wake through a newly established simulation model, the reliability of which is confirmed by experimental validation. In a stratified environment with sTable positive salinity but a temperature changing from positive to negative, the wake has “cold” and “hot” characteristics at the free liquid surface, respectively, and these characteristics are enhanced with an increase in the temperature gradient. In a stratified environment with a sTable positive temperature but changing positive salinity, the wake stream has “cold” characteristics at the free liquid surface, and the feature intensity has a weak positive correlation with the salinity gradient. In general, under the boundary and initial conditions studied in this paper, temperature stratification is the main factor determining the thermal characteristics of the free surface, and salinity stratification is the secondary factor. The influence of the moving induced wake on the thermal characteristics of the wake is stronger than that of the buoyant jet. In a follow-up study, we will focus on a scale analysis of the impact of stratified features on the wake, and scale extrapolation. The influence of the free surface thermal boundary layer on the wake characteristics will be another key point for investigation.
Rocznik
Tom
Strony
153--160
Opis fizyczny
Bibliogr. 21 poz., rys., tab.
Twórcy
autor
  • Institute of Noise & vibration, Naval University of Engineering, Wuhan, China
  • National Key Laboratory on Ship Vibration & Noise, Wuhan , China
  • Institute of Noise & vibration, Naval University of Engineering, Wuhan, China
autor
  • Institute of Noise & vibration, Naval University of Engineering, Wuhan, China
autor
  • Institute of Noise & vibration, Naval University of Engineering, Wuhan, China
Bibliografia
  • 1. Zachary EM et al.On the structure and dynamics of stratified wakes generated by submerged propagating objects. Journal of Operational Oceanography 10(2), 191-204, 2017. https://doi.org/10.1080/1755876X.2017.1307801.
  • 2. Wang P et al.Comparative study on floating diffusion of submarine thermal wake based on dynamic grid and incoming flow method. Chinese Journal of Engineering Thermophysics 41(10), 2589-2595, 2020.
  • 3. Wang B et al. Numerical simulation of influence of propeller on thermal wake buoyation of submarine. Journal of Harbin Engineering University 43(5), 673-680, 2022. http://doi:10.11990 /jheu.202101022.
  • 4. Lin JT, Pao YH. Wakes in stratified fluids. Annual Review of Fluid Mechanics 11, 317-338, 1979. https://doi.org/10.1146/annurev.fl.11.010179.001533.
  • 5. Riley J, Lelong MP. Fluid motions in the presence of strong sTable stratification. Annual Review of Fluid Mechanics 32, 613-657, 2000. https://doi.org/10.1146/annurev.fluid.32.1.613.
  • 6. Spedding GR. Wake signature detection. Annual Review of Fluid Mechanics 46, 273-302, 2014. https://doi.org/10.1146/annurev-fluid-011212-140747.
  • 7. Spedding GR et al.Turbulence, similarity scaling and vortex geometry in the wake of a towed sphere in a stably stratified fluid. Journal of Fluid Mechanics 314, 55-103, 1996. https://doi.10.1017/S0022112096000237.
  • 8. Voropayev SI, Afanasyev YD. Vortex structures in a stratified fluid: Order from chaos (applied mathematics). London; Chapman & Hall, 1994.
  • 9. Voropayev SI et al.Large vortex structures behind a maneuvering body in stratified fluids. Physics of Fluids 11, 1682-1684, 1999. https://doi.org/10.1063/1.870030.
  • 10. Radko T, David L. The age of a wake. Physics of Fluids 31(7), 076601, 2019. https://doi.10.1063/1.5100969.
  • 11. Dommermuth DG et al.Numerical simulation of the wake of a towed sphere in a weakly stratified fluid. Journal of Fluid Mechanics 473, 83-101, 2002. https://doi.org/10.1017/S0022112002002276.
  • 12. Troitskaya Y et al.A theoretical model of a wake of a body towed in a stratified fluid at large Reynolds and Froude numbers. Nonlinear Processes in Geophysics 13, 247-253, 2006. https://doi.org/10.5194/npg-13-247-2006.
  • 13. Redford J et al.A numerical study of a weakly stratified turbulent wake. Journal of Fluid Mechanics 776, 568-609, 2015. https://doi.org/10.1017/jfm.2015.324.
  • 14. Pasquetti R. Temporal/spatial simulation of the stratified far wake of a sphere. Computers & Fluids 40(1), 179-187, 2011. https://doi.org/10.1016/j.compfluid.2010.08.023.
  • 15. Sergey AS et al.Wake instability and dipole formation in stratified fluids. Fourth International Symposium on Computational Wind Engineering (CWE2006), Yokohama, 2006.
  • 16. Meunier P, Spedding GR. Stratified propelled wakes. Journal of Fluid Mechanics 552, 229-256, 2006. https://doi.org/10.1017/S0022112006008676.
  • 17. Du Y et al.Experimental study on the coupling effect of wake and buoyancy jet in warm and salt stratified environment. Chinese Journal of Engineering Thermophysics 45(6), 1780-1787, 2024.
  • 18. Spalart PR. Comments on the feasibility of LES for wings, and on a hybrid RANS/LES approach. Proceedings of the First AFOSR International Conference on DNS/LES, Greyden Press, 1997.
  • 19. Gebhart B, Mollendorf JC. A new density relation for pure and saline water. Deep Sea Research Part II Topical Studies in Oceanography 24(9), 831-848, 1977. https://doi.org/10.1016/0146-6291(77)90475-1.
  • 20. Own CT, Millero FJ. The specific volume of seawater at high pressures. Deep-Sea Research 23, 595-612, 1976. https://doi.org/10.1016/0011-7471(76)90003-6.
  • 21. Fine RA, Millero F J. Compressibility of water as a function of temperature and pressure. Journal of Chemical Physics 59, 5529-5536, 1973. https://doi.org/10.1063/1.1679903.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki i promocja sportu (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-85b40dcc-e65f-428b-9adc-b0be6694fdee
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.