PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Fine detection on water abundance of sandstone by joint inversion of seismic and CSAMT: a case study in the western Ordos Basin, China

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The Ningdong mining area in the western Ordos Basin, China, mainly mines coal seam in Yan'an group, where its overlying rock is a thick sandstone layer of the Middle Jurassic Zhiluo Formation. This rock layer poses a direct water hazard threat to the coal mining if it is water-rich. The water abundant rock layer in the upper strata of Zhiluo Formation forms a low-resistivity overburden layer, decreasing the resolution of controlled source audio magnetotelluric (CSAMT) method in detecting water-bearing in the lower part of Zhiluo Formation sandstone layer of coal seam direct roof. Therefore, under the influence of the low resistivity overburden of the upper sandstone, how to accurately detect the aquosity of the lower sandstone layer is of great importance to the safe mining of coal mines in the region. On the basis of CSAMT detection, combined with high-resolution seismic exploration method, the joint inversion of seismic and CSAMT is realized by using cross-gradient operation between the seismic wave impedance attributes clustered by particle swarm algorithm and CSAMT inversion model. The seismic data fitting term in the joint inversion objective function is discarded, and the pseudo-2D inversion method is used for CSAMT to reduce the calculation cost of the inversion. A 3D geological model conforming to the hydrogeological characteristics of the Ningdong mining area is established, and the joint inversion test between seismic and CSAMT is conducted, proving the feasibility and applicability of joint inversion to detect the water enrichment of sandstone in this area. The accuracy of the seismic and CSAMT joint inversion results is verified by combining the engineering example of water abundance detection in the sandstone layer in Maiduoshan coal mine that accorded with the typical hydrogeological characteristics of Ningdong mining area and the results of later downhole drilling exposures, which is remarkably better than the single method. The research shows that the joint inversion of seismic and CSAMT can accurately identify the water abundance of the lower sandstone layer and its range under the influence of the upper low resistance sandstone overburden and achieve the purpose of fine detection of the water abundances of the lower sandstone layer of the Zhiluo Formation. The joint inversion can provide important safety geological guarantee for the mining of coal seams in the Ningdong mining area in the western part of Ordos Basin.
Czasopismo
Rocznik
Strony
2045--2056
Opis fizyczny
Bibliogr. 28 poz.
Twórcy
autor
  • State Key Laboratory of Coal Resources and Safe Mining, China University of Mining & Technology, Beijing 100083, China
  • State Key Laboratory of Coal Resources and Safe Mining, China University of Mining & Technology, Beijing 100083, China
autor
  • Hebei University of Engineering, Handan 056009, China
autor
  • State Key Laboratory of Coal Resources and Safe Mining, China University of Mining & Technology, Beijing 100083, China
autor
  • Key Laboratory of Mine Disaster Prevention and Control, North China Institute of Science and Technology, Yanjiao, Beijing 101601, China
autor
  • State Key Laboratory of Coal Resources and Safe Mining, China University of Mining & Technology, Beijing 100083, China
autor
  • State Key Laboratory of Coal Resources and Safe Mining, China University of Mining & Technology, Beijing 100083, China
  • School of Architectural Engineering, Anhui University of Technology, Maanshan 243000, China
Bibliografia
  • 1. Aykac S, Timur E, Sari C, Caylak C (2015) CSAMT investigations of the caferbeyli (manisa/turkey) geothermal area. J Earth Syst Sci 124(1):149–159. https://doi.org/10.1007/s12040-014-0521-1
  • 2. Cheng JL, Li MX, Xiao YL, Sun XY, Chen D (2014) Study on particle swarm optimization inversion of mine transient electromagnetic method in whole-space. Chinese J Geophys 57(10):3478–3484 ((in Chinese))
  • 3. Di QY, Fu CM, An ZG, Wang R, Wang GJ, Wang MY, Qi SW, Liang PF (2020) An application of CSAMT for detecting weak geological structures near the deeply buried long tunnel of the Shijiazhuang-Taiyuan passenger railway line in the Taihang Mountains. Eng Geol 268(1):105517. https://doi.org/10.1016/j.enggeo.2020.105517
  • 4. Dong Y, Cheng JL, Xue JJ, Wen LF, Chen T, Wang HJ, Chen Z, Tian CX (2021) Research on Pseudo-2D joint inversion of TEM and CSAMT Based on Well Log Constraint. J Environ Eng Geoph 26(1):61–70. https://doi.org/10.32389/JEEG20-052
  • 5. Gallardo LA, Meju MA (2003) Characterization of heterogeneous near-surface materials by joint 2D inversion of dc resistivity and seismic data. Geophys Res Lett 30(13):183–196. https://doi.org/10.1029/2003GL017370
  • 6. Hamdan HA, Vafidis A (2013) Joint inversion of 2D resistivity and seismic travel time data to image saltwater intrusion over karstic areas. Environ Earth Sci 68(7):1877–1885. https://doi.org/10.1007/s12665-012-1875-9
  • 7. Han CH, Wei JC, Xie DL, Xu JG, Zhang WJ, Zhao ZC (2020) Water-richness evaluation of sandstone aquifer based on set pair analysis-variable fuzzy set coupling method: a case from Jurassic Zhiluo formation of Jinjiaqu Coal mine in Ningdong mining area. J Chin Coal Soc 45(7):2432–2443 ((in Chinese))
  • 8. Huang JW, Ma CY, Sun Y (2021) 2D magnetotelluric forward modelling for deep buried water-rich fault and its application. J Appl Geophys 192:104403. https://doi.org/10.1016/j.jappgeo.2021.104403
  • 9. Kouadio KL, Xu Y, Liu CM, Zakaria B (2020) Two-dimensional inversion of CSAMT data and three-dimensional geological mapping for groundwater exploration in Tongkeng Area, Hunan Province China. J Appl Geophys 183:104204. https://doi.org/10.1016/j.jappgeo.2020.104204
  • 10. Li F, Cheng J, Yang S, Wen L, Dong Y (2019) Experimental study on joint inversion of water conducted karstic collapse column based on mine TEM and seismic exploration. J Chin Coal Soc 45(7):2472–2481 ((in Chinese))
  • 11. Li H, Xue GQ, Zhou NN, Chen WY (2015) Appraisal of an array TEM method in detecting a mined-out area beneath a conductive layer. Pure Appl Geophys 172(10):2917–2929. https://doi.org/10.1007/s00024-015-1075-0
  • 12. Li XL, Dong SN, Liu KD (2021) Prevention and control of water inrushes from subseam karstic ordovician limestone during coal mining above ultra-thin aquitards. Mine Water Environ 40(2):345–356. https://doi.org/10.1007/s10230-021-00765-3
  • 13. Liu GF, Meng XH, Tan HD, Chen ZX, Ni JH, Liu LB (2020) Case study: joint seismic reflection and CSAMT data interpretation for mineral explorations in Fujian. China Acta Geophys 68(5):1–13. https://doi.org/10.1007/s11600-020-00477-2
  • 14. Ma LJ, Zhao BF, Wang H, Gao Y (2020) Analysis of spatial differences in permeability based on sedimentary and structural features of the sandstone aquifer overlying coal seams in western China. Mine Water Environ 39(3):1–13. https://doi.org/10.1007/s10230-020-00682-x
  • 15. Ruthsatz AD, Flores AS, Diaz D, Reinoso PS, Herrera C, Brasse H (2018) Joint TEM and MT aquifer study in the Atacama Desert, North Chile. J Appl Geophys 153:7–16. https://doi.org/10.1016/j.jappgeo.2018.04.002
  • 16. Shao LS, Liu ZD, Lv QT, Yan JY, Zhang K, Zhao JH, Qi G, Zhang YW (2015) Deep fine structure of Guichi Ore concentrated area: The understanding of the integrated geophysical detection results. Chin J Geophys-ch 58(12):4490–4504. https://doi.org/10.6038/cjg20151213
  • 17. Shi ZX, Ma JL, Gao JZ, Zhang JW, Liu K, Zhao CL (2017) Mineralogical of the Jurassic coals in the middle of Ningdong Coalfield. J Chin Coal Soc 42(6):1535–1543 ((in Chinese))
  • 18. Šumanovac F, Orešković J (2018) Exploration of buried carbonate aquifers by the inverse and forward modelling of the controlled source audio-magnetotelluric data. J Appl Geophys 153:47–63. https://doi.org/10.1016/j.jappgeo.2018.04.007
  • 19. Sun R, Kaslilar A, Juhlin C (2020) Reprocessing of high-resolution seismic data for imaging of shallow groundwater resources in glacial deposits, SE Sweden. Near Surf Geophys 18(5):545–559. https://doi.org/10.1002/nsg.12101
  • 20. Suzuki K, Kusano Y, Ochi R, Nishiyama N, Tokunaga T, Tanaka K (2016) Electromagnetic exploration in high-salinity groundwater zones: case studies from volcanic and soft sedimentary sites in coastal Japan. Explor Geophys 48(2):95–109. https://doi.org/10.1016/j.jappgeo.2018.04.007
  • 21. Touma R, Blondel T, Derode A, Campillo M, Aubry A (2021) A distortion matrix framework for high-resolution passive seismic 3-D imaging: application to the San Jacinto fault zone, California. Geophys J Int 226(2):780–794. https://doi.org/10.1093/gji/ggab133
  • 22. Vozoff K, Jupp DLB (1975) Joint inversion of geophysical data. Geophys. J. R. astr. Soc. 42(3):977–991. https://doi.org/10.1111/j.1365-246X.1975.tb06462.x
  • 23. Wang P, Yao WH, Su C, Wang Y, Wang Q (2020) Detection of abandoned water-filled mine tunnels using the downhole transient electromagnetic method. Explor Geophys 51(3):1–16. https://doi.org/10.1080/08123985.2020.1746182
  • 24. Wang R, Yin CC, Wang MY, Di QY (2015) Laterally constrained inversion for CSAMT data interpretation. J Appl Geophys 121:63–70. https://doi.org/10.1016/j.jappgeo.2015.07.009
  • 25. Wynn J, Mosbrucker A, Pierce H, Spicer K (2016) Where is the hot rock and where is the ground water – using csamt to map beneath and around mount St. Helens. J Environ Eng Geoph 21(2):79–87. https://doi.org/10.2113/JEEG21.2.79
  • 26. Xue GQ, Hou DY, Qiu WZ (2018) Identification of double-layered water filled zones using TEM: a case study in China. J Environ Eng Geoph 23(3):297–304. https://doi.org/10.2113/JEEG23.3.297
  • 27. Yan S, Xue GQ, Qiu WZ, Li H, Zhong HS (2016) Feasibility of central loop TEM method for prospecting multilayer water-filled goaf. Appl Geophys 13(4):587–597. https://doi.org/10.1007/s11770-016-0586-5
  • 28. Yao QL, Chen T, Li XH, Wang A (2017) Experimental study on coarsely water-bearing sandstone in roof of Jurassic coal seam. J Chin Coal Soc 42(1):183–188
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-85af007a-96cc-4a31-84ae-d254520560d1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.