PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Removal of a textile dye (RBBR) from the water environment by fungi isolated from lignocellulosic composts

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A representative group of hydrophilic fungi from the genus Trichoderma isolated from lignocellulose composts with varying degrees of maturity was analyzed for their ability to biodegrade a harmful anthraquinone dye, i.e. Remazol Brilliant Blue R (RBBR). In RBBR-containing post-culture liquids, there were determined the degree of RBBR decolorization, horseradish peroxidase-like, superoxide dismutase-like, and xylanase activities, and the concentrations of low-molecular phenolic compounds. The study results demonstrated that Trichoderma asperellum, T. harzianum, and T. lixii strains isolated from compost containing larger amounts of easily available lignocellulose fractions, i.e. grasses, exhibit higher RBBR decolorization efficiency ranging from 0.3 to 62% than T. citrinoviride strains isolated from compost II, which contained greater quantities of hardly degradable lignocellulose. The decolorization of remazol blue R by the investigated Trichoderma strains intensified significantly with the increase in peroxidase activity and it was correlated with a decline in the content of low-molecular phenolic compounds. The dynamics of changes in the horseradish peroxidase-like, superoxide dismutase, and xylanase activities in the aqueous post-culture liquids of the investigated fungal strains depended largely on the duration of the culture. Given their ability to adapt to water environments, e.g. wastewater, and to decolorize and detoxify the RBBR anthraquinone dye, Trichoderma fungi can be used for bioremediation of such environments.
Rocznik
Strony
12--20
Opis fizyczny
Bibliogr. 38 poz., tab., wykr.
Twórcy
  • University of Life Sciences in Lublin, Faculty of Agrobioengineering, Department of Environmental Microbiology, Poland
Bibliografia
  • 1. Bhatt, M., Patel, M., Rawal, B., Navotný, Č., Molitoris, H.P. & Šašek, V. (2000). Biological decolorization of the synthetic dye RBBR in contaminated soil, World Journal of Microbiology and Biotechnology, 16, pp. 195-198.
  • 2. Bohacz, J. (2017). Lignocellulose-degrading enzymes, free-radical transformations during composting of lignocellulosic waste and biothermal phases in small-scale reactors, Science of the Total Environment, 580, pp. 744-754, https://doi.org/10.1016/j.scitotenv.2016.12.021.
  • 3. Chamuris, G.P., Koziol-Kotch, S. & Brouse, T.M. (2000). Screening fungi isolated from woody composts for lignin-degrading potential, Compost Science and Utilization, 8, pp. 6-11, https://doi.org/10.1080/1065657X.2000.10701743.
  • 4. Claiborne, A. & Fridovich, I. (1979). Chemical and Enzymatic Intermediates in the Peroxidation of o-Dianisidine by Horseradish Peroxidase. 1. Spectral Properties of the Products of Dianisidine Oxidation, Biochemistry, 18, pp. 2329-2335, https://doi.org/10.1021/bi00578a029.
  • 5. Domsch, K.H., Gams, W. & Anderson, T.H. (2007). Compendium of soil Fungi, IHW-Verlag Eching, München 2007.
  • 6. Grabińska-Łoniewska, A., Perchuć, M. & Korniłowicz-Kowalska, T. (2004). Biocenosis of BACFs used for groundwater treatment, Water Research, 38, 7, pp. 1695-1706, https://doi.org/10.1016/j.watres.2003.12.041.
  • 7. Grönqvist, S., Viikari, L., Niku-Paavola, M.-L., Orlandi, M., Canevali, C. & Buchert, J. (2005). Oxidation of milled wood lignin with laccase, tyrosinase and horseradish peroxidase, Applied Microbiology and Biotechnology, 67, 489-494, https://doi.org/10.1007/s00253-004-1800-6.
  • 8. Jasińska, A., Różalska, S., Bernat, P., Paraszkiewicz, K. & Długoński, J. (2012). Malachite green decolorization by non-basidiomycete filamentous fungi of Penicillium pinophilum and Myrothecium roridum. International Biodeterioration and Biodegradation, 73, pp. 33-40, http://dx.doi.org/10.1016/j.ibiod.2012.06.025.
  • 9. Jin, X., Liu, G., Xu, Z. & Yao, W. (2007). Decolorization of a dye industry effluent by Aspergillus fumigatus XC6. Applied of Microbiology and Biotechnology,74, pp. 239-243, https://doi.org/10.1007/s00253-006-0658-1.
  • 10. Khudhair, A,B, Hadibarata, T. & Yusoff , A.R.M. (2015). Decolorization of reactive dyes by consortiums of bacteria and fungi, Malaysian Journal of Civil Engineering, 27, 1, pp. 195-206.
  • 11. Korniłłowicz-Kowalska T. & Rybczyńska K. (2012). Decolorization of Remazol Brilliant Blue (RBBR) and Poly R-478 dyes by Bjerkandera adusta CCBAS930, Central European Journal of Biology, 7, 5, pp. 948-956, https://doi.org/10.2478/s11535-012-0076-6.
  • 12. Korniłłowicz-Kowalska, T., Ginalska, G., Belcarz, A. & Iglik, H. (2008). Decolorization of humic acids and alkaline lignin derivative by anamorphic Bjerkandera adusta R59 strain isolated from soil, Polish Journal of Environmental Studies, 17, 6, pp. 903-906.
  • 13. Lade, H. Kadam, A. Paul, D. & Govindwar, S. (2016). Exploring the potential of fungal-bacterial consortium for low-cost biodegradation and detoxification of textile effluent, Archives of Environmental Protection, 42, 4, pp. 12-21. DOI: 10.1515/aep-2016-0042.
  • 14. López, M. J., Guisado, G., Vargas-García, M.C., Suárez-Estrella, F. & Moreno, J. (2006). Decolorization of industrial dyes by ligninolytic microorganisms isolated from composting environment, Enzyme and Microbial Technology, 40, 1, pp. 42-45, https://doi.org/10.1016/j.enzmictec.2005.10.035.
  • 15. Lopez, M.J., Vargas-García, M.C., Suárez-Estrella, F., Nichols, N.N., Dien, B.S. & Moreno, J. (2007). Lignocellulose-degrading enzymes produced by the ascomycete Coniochaeta ligniaria and related species: Application for a lignocellulosic substrate treatment, Enzyme and Microbial Technology, 40, pp. 794-800, https://doi.org/10.1016/j.enzmictec.2006.06.012.
  • 16. Lowry, O., Rosenbrough, N.J., Farr, A.L. & Randall, R.J. (1951). Protein measurement with Folin phenol reagent, Journal of Biological Chemistry, 193, pp. 265-275.
  • 17. Malarczyk, E., Nowak, G., Nowak, M., Kochmańska-Rdest, J., Fukuzumi, T. & Leonowicz, A. (1995). Relations between SOD, laccase and other enzymes during the fruiting process of Pleurotus specia growing on a ligninocellulosic medium, In: Srebotnik, E. & Messner, K. (Eds), Proc. 6th Intern. Conf. Biotechnol. Pulp Paper Ind, Facultas Universitätsverlag Vienna, Austria, pp. 641-644.
  • 18. Marklund, S. & Marklund, C. (1974). Involvement of the superoxide anion radical in the autoxidation of pirogallol and a convenient assay for SOD, European Journal of Biochemistry, 47, pp. 496-474, https://doi.org/10.1111/j.1432-1033.1974.tb03714.x
  • 19. Megha, V., Meenakshi, S. & Rai J.P.N. (2015). Optimization of different parameters on synthetic dye decolorization by free and immobilized Mucor hiemalis MV04 (KR078215), Research Journal of Chemical Sciences, 5, 6, pp. 20-27.
  • 20. Mester, T. & Tien, M. (2000). Oxidation mechanisms of ligninolytic enzymes involved in the degradation of environmental pollutants, International Biodeterioration and Biodegradation, 46, pp. 51-59.
  • 21. Miller, G. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar, Anayitical Chemistry, 31, 3, pp. 426-428, https://doi.org/10.1021/ac60147a030.
  • 22. Noman, E., Al-Gheethi, A.A., Talip, B., Mohamed, R. & Kassim, A.H. (2019). Mycoremediation of Remazol Brilliant Blue R in greywater by a novel local strain of Aspergillus iizukae 605EAN: optimization and mechanism study, International Journal of Environmental Analytical Chemistry, pp. 1-8, https://doi.org/10.1080/03067319.2019.1657852.
  • 23. Paździoch-Czochra, M., Malarczyk, E. & Sielewiesiuk, J. (2003). Relationship of demethylation processes to veratric acid concentration and cell density in cultures of Rhodococcus erythropolis. Cell Biology International, 27, pp. 325-336, https://doi.org/10.1016/S1065-6995(02)00282-2.
  • 24. Plácido, J. & Capareda, S. (2015). Ligninolytic enzymes: a biotechnological alternative for bioethanol production, Bioresources and Bioprocessing, 2, 23, pp. 1-12, https://doi.org/10.1186/s40643-015-0049-5.
  • 25. Rodriguez-Couto, S. (2011). Production of laccase and decolouration of the textile dye remazol Brilliant Blue R in temporary immersion bioreactors, Journal of Hazardous Materials, 194, pp. 297-3-02, DOI: 10.1016/j.jhazmat.2011.07.098.
  • 26. Rybczyńska, K. & Korniłłowicz-Kowalska T. (2015). Evaluation of dye compounds’ decolorization capacity of selected H.haematococca and T. harzianum strains by Principal Component Analysis (PCA), Water, Air and Soil Pollution, 226, 228, pp. 1-15, https://doi.org/10.1007/s11270-015-2473-8.
  • 27. Rybczyńska-Tkaczyk, K. & Korniłłowicz-Kowalska, T. (2017). Biotransformation and ecotoxicity evaluation of alkali lignin in optimized cultures of microscopic fungi, International Biodeterioration and Biodegradation, 117, pp. 131-140, https://doi.org/10.1016/j.ibiod.2016.12.011.
  • 28. Ryazanova, T.V., Chuprova, N.A. & Luneva, T.A. (2015). Effect of Trichoderma fungi on lignin from tree species barks, Catalysis in Industry, 7, 1, pp. 82-89, https://doi.org/10.1134/S2070050415010134.
  • 29. Shedbalkar, U., Dhanve, R.& Jadhav, J. (2008). Biodegradation of triphenylmethane dye cotton blue by Penicillium ochrochloron MTCC 517, Journal of Hazardous Materials, 157, 2-3, pp. 472-479, DOI: 10.1016/j.jhazmat.2008.01.023.
  • 30. Silveira, F.Q.P., de Sousa, M.V., Ricart, C.A.O., Milagres, A.M.F., de Medeiros, C.L. & Filho, E.X.F. (1999). A new xylanase from a Trichoderma harzianum strain, Journal of Industrial Microbiology & Biotechnology, 23, pp. 682-685, https://doi.org/10.1038/sj.jim.2900682.
  • 31. Singh, S.N. Shweta, M. & Nitanshi, J. (2015). Degradation of Antraquinone Dyes Stimulated by Fungi, in: Microbial Degradation of Synthetic Dyes in Wastewaters, Environmental Science and Engineering, Singh S.N. (Ed). Springer International Publishing, Switzerland, pp. 333-356.
  • 32. Sumandono, T., Saragih, H., Migirin, Watanabe, T. & Amirta R. (2015). Decolorization of Remazol Brilliant Blue R by new isolated white rot fungus collected from tropical rain forest in East Kalimantan and its ligninolytic enzymes activity, Procedia Environmental Sciences, 28, pp. 45-51, https://doi.org/10.1016/j.proenv.2015.07.007.
  • 33. Szakács Dobozi, M., Szakács, G. & Bruschi, C.V. (1992). Xylanase activity of Phanerochaete chrysosporium, Applied of Environmental Microbiology, 58, 11, pp. 3466-3471.
  • 34. Ulmer, D.C., Leisola, M.S.A. & Fiechter, A. (1984). Possible induction of the ligninolytic system of Phanerochaete chrysosporium. Journal of Biotechnology, 1, 1, pp. 13-24, https://doi.org/10.1016/S0168-1656(84)90055-5.
  • 35. Velayutham, K., Madhava, A.K., Pushparaj, M., Thanarasu, A., Devaraj, T., Periyasamy, K. & Subramanian, S. (2018) Biodegradation of Remazol Brilliant Blue R using isolated bacterial culture (Staphylococcus sp. K2204), Environmental Technology, 39, 22, pp. 2900-2907, https://doi.org/10.1080/09593330.2017.1369579.
  • 36. Vyas, B.R.M. & Molitoris, P. (1995). Involvement of an extracellular H2O2-dependent ligninolytic activity of the white rot fungus Pleurotus ostreatus in the decolorization of Remazol Brilliant Blue R, Applied of Environmental Microbiology, 61,11, pp. 3919-3927.
  • 37. Westermark, U. & Eriksson, K.-E. (1974). Carbohydrate-dependent enzymatic quinone reduction during lignin degradation, Acta Chemica Scandinavica B, 28, pp. 204-208.
  • 38. Zou, H., Chu, L. & Wang, Y. (2019). Azo dye wastewater treatment in a novel process of biofilm coupled with electrolysis, Archives of Environmental Protection, 45, 3, pp. 38-43, DOI: 10.24425/aep.2019.128639.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-85aa18d4-09b6-4f94-91cb-c36f608bcc49
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.