PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Understanding the interplay between baroreflex gain, low frequency oscillations, and pulsatility in the neural baroreflex

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The neural baroreflex, which regulates mean arterial pressure (MAP) via the action of the brain, consists of baroreceptors which measure MAP, and actuators that can produce a change in MAP, such as the heart and parts of the peripheral resistance containing innervated smooth muscle. The brain is the controlling unit, maintaining an appropriate MAP in spite of various disturbances. Under certain circumstances, including haemorrhage and other states of distress, the gain of the neural baroreflex can change, causing low frequency (LF) oscillations (sometimes termed Mayer waves) in blood pressure (BP). Though their purpose is unclear, the origins of these LF oscillations has previously been explained via a nonlinear feedback model, though focusing on the peripheral resistance as an MAP actuator only. The present paper now includes analytical and simulation results explaining the LF oscillation phenomenon for the full neural baroreflex, containing both peripheral resistance (PR) and cardiac branches. However, the main contribution of the paper is to examine the effect of blood pulsatility, or a lack of pulsatility, on the neural baroreflex, and how it's effect can manifest in the presence of LF oscillations. This may have importance in cases where pulsatility is reduced (for example where left-ventricular assist devices are present), or completely absent (for example in turbine-based artificial hearts).
Twórcy
  • Dept. of Electronic Engineering, Maynooth University, Maynooth, Co. Kildare, Ireland
  • Dept. of Electronic Engineering, Maynooth University, Maynooth, County Kildare, Ireland
Bibliografia
  • [1] Julien C. The enigma of Mayer waves: facts and models. Cardiovasc Res 2006;70(1):12–21.
  • [2] Ringwood JV, Malpas SC. Slow oscillations in blood pressure via a nonlinear feedback model. Am J Physiol – Regul Integr Comp Physiol 2001;280(4):R1105–1.
  • [3] Moazami N, Dembitsky WP, Adamson R, Steffen RJ, Soltesz EG, Starling RC, et al. Does pulsatility matter in the era of continuous-flow blood pumps? J Heart Lung Transplant 2015;4(8):999–1004.
  • [4] Vašků J, Wotke J, Dobšák P, Baba A, Rejthar A, Kuchtícková Š, et al. Acute and chronic consequences of non-pulsatile blood flow pattern in long-term total artificial heart experiment. Pathophysiology 2007;14(2):87–95.
  • [5] Timms D. A review of clinical ventricular assist devices. Med Eng Phys 2011;33(9):1041–7.
  • [6] Slaughter MS, Rogers JG, Milano CA, Russell SD, Conte JV, Feldman D, et al. Advanced heart failure treated with continuous-flow left ventricular assist device. N Engl J Med 2009;361:2241–51.
  • [7] Cooley RL, Montano N, Cogliati C, Van de Borne P, Richenbacher W, Oren R, et al. Evidence for a central origin of the low-frequency oscillation in rr-interval variability. Circulation 1998;98(6):556–61.
  • [8] Yozu R, Golding L, Yada I, Harasaki H, Takatani S, Kawada S, et al. Do we really need pulse? chronic nonpulsatile and pulsatile blood flow: from the exercise response viewpoints. Artif Organs 1994;18(9):638–42.
  • [9] Baba A, Dobsak P, Mochizuki S, Saito I, Isoyama T, Takiura K, et al. Evaluation of pulsatile and nonpulsatile flow in microvessels of the bulbar conjunctiva in the goat with an undulation pump artificial heart. Artif Organs 2003;27 (10):875–81.
  • [10] Ishbulatov YM, Kiselev AR, Mureeva EN, Popova YV, Kurbako AV, Gridnev VI, et al. Diagnostics of coupling between low-frequency loops in cardiovascular autonomic control in adults, newborns and mathematical model using cross-recurrence analysis. Russ Open Med J 2019;8(4):1–5.
  • [11] Karavaev A, Ishbulatov YM, Ponomarenko V, Bezruchko B, Kiselev A, Prokhorov M. Autonomic control is a source of dynamical chaos in the cardiovascular system. Chaos 2019;29(12):121101.
  • [12] Seidel H, Herzel H. Bifurcations in a nonlinear model of the baroreceptor-cardiac reflex. Phys D: Nonlinear Phenom 1998;115(1-2):145–60.
  • [13] Kotani K, Struzik ZR, Takamasu K, Stanley HE, Yamamoto Y. Model for complex heart rate dynamics in health and diseases. Phys Rev E 2005;72(4):041904.
  • [14] Bighamian R, Parvinian B, Scully CG, Kramer G, Hahn J-O. Control-oriented physiological modeling of hemodynamic responses to blood volume perturbation. Control Eng Pract 2018;73:149–60.
  • [15] Ursino M. Interaction between carotid baroregulation and the pulsating heart: a mathematical model. Am J Physiol- Heart Circ Physiol 1998;275(5):H1733–47.
  • [16] Ursino M, Fiorenzi A, Belardinelli E. The role of pressure pulsatility in the carotid baroreflex control: a computer simulation study. Comput Biol Med 1996;26(4):297–314.
  • [17] Preiss G, Polosa C. Patterns of sympathetic neuron activity associated with Mayer waves. Am J Physiol-Legacy Content 1974;226(3):724–30.
  • [18] Ringwood JV, Kinnane OP. Prediction of low frequency blood pressure oscillations via a combined heart/resistance model. IFAC Proc Vol 2005;38(1):60–5.
  • [19] Ringwood JV, Taussi F, de Paor AM. The effect of pulsatile blood flow on blood pressure regulatory mechanisms. 2012 IEEE International Conference on Control Applications; 2012. pp. 609–14.
  • [20] Bagnall Hare H, Ringwood JV. The modulation of neural blood pressure control by blood pressure pulsatility. 2019 30th Irish Signals and Systems Conference (ISSC); 2019. pp. 1–6.
  • [21] Janssen B, Malpas SC, Burke SL, Head GA. Frequency- dependent modulation of renal blood flow by renal nerve activity in conscious rabbits. Am J Physiol – Regul Integr Comp Physiol 1997;273(2):R597–608.
  • [22] Osborn JW. Hypothesis: set-points and long-term control of arterial pressure. a theoretical argument for a long-term arterial pressure control system in the brain rather than the kidney. Clin Exp Pharmacol Physiol 2005;32(5–6):384–93.
  • [23] Thomas GD. Neural control of the circulation. Adv Physiol Educ 2011;35(1):28–32.
  • [24] Burattini R, Natalucci S. Complex and frequency-dependent compliance of viscoelastic W indkessel resolves contradictions in elastic W indkessels. Med Eng Phys 1998;20(7):502–14.
  • [25] Ikeda Y, Kawada T, Sugimachi M, Kawaguchi O, Shishido T, Sato T, et al. Neural arc of baroreflex optimizes dynamic pressure regulation in achieving both stability and quickness. Am J Physiol-Heart Circ Physiol 1996;271(3): H882–90.
  • [26] Kawada T, Zheng C, Yanagiya Y, Uemura K, Miyamoto T, Inagaki M, et al. High-cut characteristics of the baroreflex neural arc preserve baroreflex gain against pulsatile pressure. Am J Physiol-Heart Circ Physiol 2002;282(3): H1149–56.
  • [27] de Paor A, Ringwood J. A simple soft limiter describing function for biomedical applications. IEEE Trans Biomed Eng 2006;53(7):1233–40.
  • [28] Sato T, Kawada T, Inagaki M, Shishido T, Takaki H, Sugimachi M, et al. New analytic framework for understanding sympathetic baroreflex control of arterial pressure. Am J Physiol-Heart Circ Physiol 1999;276(6): H2251–6.
  • [29] Levy MN. Sympathetic-parasympathetic interactions in the heart. Circ Res 1971;29(5):437–45.
  • [30] Seidel H. Nonlinear dynamics of physiological rhythms. Lagos Verlag; 1997.
  • [31] Kawada T, Sugimachi M, Shishido T, Miyano H, Sato T, Yoshimura R, et al. Simultaneous identification of static and dynamic vagosympathetic interactions in regulating heart rate. Am J Physiol – Regul Integr Comp Physiol 1999;276(3):R782–9.
  • [32] Barrett CJ, Ramchandra R, Guild S-J, Lala A, Budgett DM, Malpas SC. What sets the long-term level of renal sympathetic nerve activity: a role for Angiotensin II and baroreflexes? Circ Res 2003;92(12):1330–6.
  • [33] 1926 Association for the Publication of the Journal of Internal Medicine, Part II: The heart's minute-volume and stroke-volume in rabbits in normal condition and during experimental pneumonia. J Intern Med 1926;64(s17):60–182.
  • [34] Guild S-J, Austin PC, Navakatikyan M, Ringwood JV, Malpas SC.Dynamic relationship between sympathetic nerve activity and renal blood flow: a frequency domain approach. Am J Physiol – Regul Integr Comp Physiol 2001;281(1):R206–12.
  • [35] Siddiqui A.Effects of vasodilation and arterial resistance on cardiac output. J Clin Exp Cardiol 2011;2(11).
  • [36] Simpson R, Power H.Applications of high frequency signal injection in non-linear systems. Int J Control 1977;26 (6):917–43.
  • [37] Guild S-J. Private communication; 2018.
  • [38] Atherton DP. Nonlinear control engineering. Van Nostrand Reinhold Company; 1975.
  • [39] Moré JJ. The Levenberg-Marquardt algorithm: implementation and theory. Numerical analysis. Springer; 1978. p. 105–16.
  • [40] Coleman TF, Li Y.An interior trust region approach for nonlinear minimization subject to bounds. SIAM J Optim 1996;6(2):418–45.
  • [41] Lagarias JC, Reeds JA, Wright MH, Wright PE.Convergence properties of the nelder-mead simplex method in low dimensions. SIAM J Optim 1998;9(1):112–47.
  • [42] Malpas SC, Bendle RD, Head GA, Ricketts JH.Frequency and amplitude of sympathetic discharges by baroreflexes during hypoxia in conscious rabbits. Am J Physiol – Heart Circ Physiol 1996;271(6):H2563–74.
  • [43] Malpas SC, Evans RG, Head GA, Lukoshkova EV. Contribution of renal nerves to renal blood flow variability during hemorrhage. Am J Physiol – Regul Integr Comp Physiol 1998;274(5):R1283–94.
  • [44] Liu H-K, Guild S-J, Ringwood JV, Barrett CJ, Leonard BL, Nguang S-K, et al. Dynamic baroreflex control of blood pressure: influence of the heart vs. peripheral resistance. Am J Physiol – Regul Integr Comp Physiol 2002;283(2):R533–42.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-85a5180e-0157-4d39-86e9-9cc734390246
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.