PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Experimental and Numerical Analysis of the Tendon Repair Process Using Tubular Braided Fabrics

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents the experimental and numerical analysis of the potential of a braided fabric for flexor tendon repair. Numerical models of tubular braided fabrics were generated using a python script interface and imported into ABAQUS® while Flexor tendon models were represented as silicone rubber rods. Experimental tests and Finite Element Modelling (FEM) of the flexor tendon repair was undertaken by deploying two tendon ends from opposite sides of a tubular braided fabric. This was done such that the tendon ends meet at the midpoint within the fabric. The tendons were tightly held to emulate a realistic repaired tendon. A displacement driven uniaxial loading was induced on the tendon-fabric assembly sufficient to cause a 2mm gap between the tendon ends. Numerical analysis of the repair potential of a braided fabric in tendon repair was done by analyzing selected fabric parameters that were crucial in tendon repair applications. The results show that changing the parameters of the braided fabrics significantly affected the potential of the fabrics during tendon repair.
Rocznik
Strony
121--129
Opis fizyczny
Bibliogr. 31 poz.
Twórcy
autor
  • Department of Textiles, Ghent University, Technologiepark 907, Zwijnaarde 9052, Ghent, Belgium
autor
  • Department of Textiles, Ghent University, Technologiepark 907, Zwijnaarde 9052, Ghent, Belgium
autor
  • Department of Textiles, Ghent University, Technologiepark 907, Zwijnaarde 9052, Ghent, Belgium
autor
  • Moi University, Department of Industrial & Textile Engineering, P.O. Box 3900 Eldoret, 30100 Kenya
  • Department of Textiles, Ghent University, Technologiepark 907, Zwijnaarde 9052, Ghent, Belgium
Bibliografia
  • [1] Drechsler K. (1999). 3-D Textile Reinforced Composites for the Transportation Industry. 3-D Textile Reinforcements in Composite Materials; 43-66.
  • [2] Tong, L., Adrian P.M., and Michael K.B. (2002). 3D Fiber Reinforced Polymer Composites; 137-146.
  • [3] Chellamani, K.P. and Indra Doraisamy. (2008). Recent advances in medical textiles. Asian Textile J. pp.49-55.
  • [4] Athanasios G P., Islam J., Alexandra Z., Stefanos K., Faruquz Z., Junaid M., and Noor B. (2011). New developments in the use of prostatic stents. Open Access Journal of Urology: 3.
  • [5] Chellamani, K.P., Sudharsan, J. and Sathish, J. (2013). Medical textiles using Braiding Technology. Journal of Academia and Industrial Research. 2(1), pp.21-26.
  • [6] Krasimira H., Eileen A., Matt D., and Christopher P. (2004). Mechanical Behavior of Circular Hybrid Braids under Tensile Loads Textile Research Journal 74(1) 20-26.
  • [7] Freitas, A.F., Araujo, M.D., Zu, W.W. and Fangueiro, R.M. (2010). Development of weft-knitted and braided polypropylene stents for arterial implant. The Journal of the Textile Institute. 101(12), 1027-1034.
  • [8] Ning, F., Potluri, P., Yu, W., and Hearle, J. (2016). Geometrical modeling of tubular braided structures using generalized rose curve. Textile Research Journal.
  • [9] Tuba A. (2012). 3D geometrical modelling of tubular Braids. Textile Research Journal. 82(5) 443-453.
  • [10] Nuutinen, J., Clerc, C., Reinikainen, R., and Törmälä, P. (2003). Mechanical properties and in vitro degradation of bioabsorbable self-expanding braided stents J. Biomater. Sci. Polymer Edn, Vol. 14, No. 3, pp. 255-266
  • [11] Irsale, S., and Adanur, S. (2006). Design and Characterization of Polymeric Stents. Journal of Industrial Textiles, 35(3):189.
  • [12] Rawson, S. D., Margetts, L., Wong, K. F., and Cartmell, S. H. (2015). Sutured tendon repair; a multi-scale finite element model. Biomech. Model. Mechanobiol. 14:123-133.
  • [13] Chizari, M., Wang, B. and Snow, M. (2010). Effect of Suturing of a Tendon Graft in ACL Reconstruction. Engineering Letters, 17:3.
  • [14] Kubota, H., Aoki, M., Pruitt, D. L., and Manske P. R. (1996). Mechanical Properties of Various Circumferential Tendon Suture Techniques. J Hand Surg Eur Vol 21 (4) 474-480.
  • [15] Mathew, B., inventor; (2013) Jan. 10. Tendon repair device method. United States patent US 2013/0013065A1.
  • [16] Bower, A. (2009). Applied Mechanics of Solids. CRC Press.
  • [17] Moriya, T., Zhao, C., Yamashita, T., An, K., and Amadio, P. (2010). Effect of Core Suture Technique and Type on the Gliding Resistance during Cyclic Motion following Flexor Tendon Repair: A Cadaveric Study. J Orthop Res.; 28(11): 1475-1481.
  • [18] Silva, J., Zhao, C., An, K., Zobitz, M., Amadio, P. (2009), Gliding Resistance and Strength of Composite Sutures in Human Flexor Digitorum Profundus Tendon Repair: An In Vitro Biomechanical Study. J. Hand Surg. 34(A), pp. 87-92
  • [19] Tanaka, T. Amadio, P. C, Zhao, C, Zobitz, M. E., Yang, C, and An, K. N., (2004), Gliding Characteristics and Gap Formation for Locking and Grasping Tendon Repairs: A Biomechanical Study in a Human Cadaver Model,” J. Hand Surg., 29A, pp. 6-14.
  • [20] Wu, Y and Tang, J. (2014). Recent developments in flexor tendon repair techniques and factors influencing strength of the tendon repair. J. Hand Surg., Vol 39E(1) 6-19.
  • [21] Peterson J and Vegborn E. (2001). Development of a pre-knitting friction test method and study of friction and bending of yarns with high stiffness. Master of Science course in Textile Technology at the School of Textiles, University College of Bora’s, Sweden, The University College of Bora’s library database. http://bada.hb.se/bitstream/2320/4525/1/BADA-joel-2008-9xjobb.pdf (accessed January 2016).
  • [22] Yoon, H. N. Sawyer, L. C. And Buckley A. (1984). Improved Comfort Polyester Part II: Mechanical and Surface Properties. Textile Research Journal vol. 54 no. 6 357-365
  • [23] Dassault Systèmes. Abaqus 6.14 User’s Manual. Dassault Systèmes, (2014).
  • [24] Zhao, Shijia; Liu, Xiangyi (Cheryl); and Gu, Linxia, (2012). The Impact of Wire Stent Fabrication Technique on the Performance of Stent Placement. Mechanical & Materials Engineering Faculty Publications. pp 61.
  • [25] Harte, A.-M., and Fleck, N. A. (2000). Deformation and Failure Mechanisms of Braided Composite Tubes in Compression and Torsion. Acta Materiala. 48 1259-1271.
  • [26] Yüksekkaya, M. E. (2001). Analysis of Elastic Deformation of Braided Tubular Structures for Medical Applications. Journal of Engineering Sciences.7(2): 277-285
  • [27] Goff, R.J. (1976). The Geometry of Tubular Braided Structures A Thesis Presented To The Faculty Of The Division Of Graduate Studies And Research. Master of Science in Textiles. Georgia Institute of Technology.
  • [28] Harte, A-M., and Norman A. (2000). On the mechanics of braided composites in tension. Fleck. Eur. J. Mech. A/ Solids Éditions scientifiques et médicales Elsevier SAS. 19259-275.
  • [29] Viinikainen, A., Göransson, H., Ryhänen J. (2008). Primary Flexor Tendon Repair Techniques. Scandinavian Journal of Surgery 97: 333-340.
  • [30] Shah A., Rowlands, Megan, Au, A. (2015). Barbed Sutures and Tendon Repair-a Review. HAND 10:6-15. American Association for Hand Surgery.
  • [31] Zobitz, M., Zhao, C., Amadio, P., An, K. (2000). Comparison of mechanical properties of various suture repair techniques in a partially lacerated tendon. J Biomech Eng. Dec 122(6) 604-7.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8594c457-a29a-4760-b3b8-b9647ef1a79f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.