PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

On some application of algebraic quasinuclei to the determinant theory

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the paper we apply the modified powers of algebraic quasinuclei to construction of determinant systems for quasinuclear perturbations of Fredholm operators. Given two pairs (Ξ, X), (Ω, Y) of conjugate linear spaces, an algebraic quasinucleus F ∈ an (Ω → Ξ, X → Y) and a determinant system for the Fredholm operator S ∈op(Ω →Ξ, X → Y), we obtain algebraic formulas for terms of a determinant system for S + TF.
Rocznik
Strony
27--38
Opis fizyczny
Bibliogr. 12 poz.
Twórcy
  • Faculty of Mathematics and Computer Science, University of Warmia and Mazury in Olsztyn Olsztyn, Poland
Bibliografia
  • [1] Sikorski R., The determinant theory in Banach spaces, Colloq. Math. 1961, 8, 141-198.
  • [2] Buraczewski A., The determinant theory of generalized Fredholm operators, Studia Math. 1963, 22, 265-307.
  • [3] Buraczewski A., Sikorski R., Analytic formulae for determinant systems in Banach spaces, Studia Math. 1980, 67, 85-101.
  • [4] Ruston A.F., On the Fredholm theory of integral equations for operators belonging to the trace class of a general Banach space, Proc. Lond. Math. Soc. III. Ser. (2) 1951, 53, 109-124.
  • [5] Grothendieck A., La theorie de Fredholm, Bull. Soc. Math. Fr. 1956, 84, 319-384.
  • [6] Leżański T., The Fredholm theory of linear equations in Banach spaces, Stud. Math. 1953, 13, 244-276.
  • [7] Pietsch A., Eigenvalues and S-numbers, Cambridge Studies in Advanced Math. Vol. 13, Cambridge Univ. Press, Cambridge 1987.
  • [8] Gohberg I., Goldberg S., Krupnik N., Traces and determinants of linear operators, Integr. Equat. Oper. Th. 1996, 26, 136-187.
  • [9] Plemelj J., Zur Theorie der Fredholmschen Funktionalgleichung, Monat. Math. Phys. 1904, 15, 93-128.
  • [10] Smithies F., The Fredholm theory of integral equations, Duke Math. J. 1941, 107-130.
  • [11] Marchetti D.H.U., An alternative to Plemelj-Smithies formulas on infinite determinants,
  • J. Funct. Anal. 1993, 117, 360-376.
  • [12] Ciecierska G., On some property of the modified power of an algebraic nucleus, Scientific Research of the Institute of Mathematics and Computer Science, Czestochowa University of Technology 2008, 2 (7), 15-21.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8593faa7-4e30-4294-83b1-cb20c67b0a3e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.