PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

A study on the calibration of an HPM meter based on a D-dot sensor and logarithmic RF power detector

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
HPM meters are required for the assessment of fields generated by sources of high-power microwaves. Finding the inverse calibration curves for such instruments is important for ensuring accuracy. The procedure is relatively simple for meters consisting of linear devices but there can also be hardware solutions implementing nonlinear ones. The objective of the present work was to develop a convenient procedure to allow finding such a curve when the meter uses a D-dot probe and a power detector. For that purpose, the results of low voltage measurements describing the properties of the detector were first analysed. Then a software code was developed to estimate the RMS value of an incident field based on measured output and frequency response. The response was estimated with very low electric field. And finally, the performance of the proposed procedure was verified by tests conducted with high electric field in a TEM cell. High conformity of the output of the meter with fields of known values was demonstrated. The maximum error related to the meter range did not exceed 4%.
Rocznik
Strony
673--685
Opis fizyczny
Bibliogr. 23 poz., rys., tab., wykr., wzory
Twórcy
  • Military University of Technology, Faculty of Electronics, Institute of Electronic Systems, gen. S. Kaliskiego 2, 00-908 Warsaw, Poland
Bibliografia
  • [1] Hamamah, F., Ahmad, W. W., Gomes, C., Isa, M. M., & Homam, M. (2019). Concerns on the Risk of Malaysian Civil and Defense Systems Due to Intentional Electromagnetic Interference. IEEE Asia-Pacific Conference on Applied Electromagnetics (APACE), Malaysia. https://doi.org/10.1109/APACE47377.2019.9021096
  • [2] Lanzrath, M., Adami, C., Joerres, B., Lubkowski, G., Joester, M., Suhrke, M., & Pusch, T. (2017). HPEM vulnerability of smart grid substations coupling paths into typical SCADA devices. International Symposium on Electromagnetic Compatibility - EMC EUROPE, Angers, 1-6. https://doi.org/10.1109/EMCEurope.2017.8094632
  • [3] Radasky, W. A., & Bäckström, M. (2014). Brief historical review and bibliography for Intentional Electromagnetic Interference (IEMI). XXXIth URSI General Assembly and Scientific Symposium (URSIGASS), Beijing, 1-4. https://doi.org/10.1109/URSIGASS.2014.6929517
  • [4] Radasky, W. A. (2010). Protection of commercial installations from the high-frequency electromagnetic threats of HEMP and IEMI using IEC standards. Asia-Pacific International Symposium on Electromagnetic Compatibility, Beijing, 758-761. https://doi.org/10.1109/APEMC.2010.5475520
  • [5] Voicu, V., Pătru, I., Nicolae, P., & Dina, L. (2017). Analyzing the attenuation of electromagnetic shielding materials for frequencies under 1 GHz.10th International Symposium on Advanced Topics in Electrical Engineering (ATEE), Bucharest, 336-339. https://doi.org/10.1109/ATEE.2017.7905057
  • [6] Zhang, H., Zhou, Y., Shi, L., Ma, R., & Huang, Z. (2014). Design of Electric Field Sensors for Measurement of Electromagnetic Pulse. Sensors & Transducers, 162(1), 131 135.
  • [7] Granovski, V., & Siraia, T. (2013). Direct and Inverse Calibration Curves of Measuring Instruments: Selection and Fitting.16th International Congress of Metrology, published by EDP Sciences, France. https://doi.org/10.1051/metrology/201304006
  • [8] Yunsheng, J., & Cui, M. (2017). Research on calibration accuracy of D-Dot transient electric field sensor. IEEE Conference on Antenna Measurements & Applications (CAMA), Tsukuba, 69-71. https://doi.org/10.1109/CAMA.2017.8273480
  • [9] Przesmycki R., & Bugaj M. (2019). D-dot Probes Used in HPM Pulse Measurements. PhotonIcs & Electromagnetics Research Symposium - Spring (PIERS-Spring), Italy, 3126-3134. https://doi.org/10.1109/PIERS-Spring46901.2019.9017522
  • [10] Sanjay, D.R., Chourasia, N., & Singh, R.K. (2019). Experimental study of factors affecting the High Power Microwave measurements. 2019 IEEE Asia-Pacific Microwave Conference (APMC), Singapore, 877-879. https://doi.org/10.1109/APMC46564.2019.9038685
  • [11] Zhang, G, Li, W, Qi, L, Liu, J, Song, Z, & Wang, J. (2018). Design of Wideband GHz Electric Field Sensor Integrated with Optical Fiber Transmission Link for Electromagnetic Pulse Signal Measurement. Sensors (Basel), 18(9). https://doi.org/10.3390/s18093167
  • [12] Sallin, M., & Daout, B. Derivative time-domain sensor and fiber optic correction factor calculation. [Montena Technical Notes TN15], Switzerland. https://www.montena.com/fileadmin/technology_tests/documents/technical_notes/TN15E_Sensor_correction_factor.pdf.
  • [13] Daout, B. Adjustment of the offset when using the integration function on a scope [Montena Technical Notes TN27], Switzerland. https://www.montena.com/fileadmin/technology_tests/documents/technical_notes/TN27B_offset_adjustment_using_integral_function.pdf.
  • [14] Yao, L., Huang, J., Kang, N., Shen, T., Liu, D., Zhang, F., & Sun, H. (2014). Compensation of the offset in numerical integration of a D-dot sensor measurement. Proceedings of 2014 3rd Asia-Pacific Conference on Antennas and Propagation, Harbin, 898-901. https://doi.org/10.1109/APCAP.2014.6992645
  • [15] Jiang, Y., & Meng, C. (2019). Calibration Method Research for High Power Transient Electromagnetic Field Sensor. IEEE Conference on Antenna Measurements & Applications (CAMA), Indonesia, 1-4. https://doi.org/10.1109/CAMA47423.2019.8959615
  • [16] Wang, K., Duan, Y., Shi, L., & Qiu, S. (2019). Laboratory Calibration of D-dot Sensor Based on System Identification Method. Sensors, 19(15), 3255. https://doi.org/10.3390/s19153255
  • [17] IEEE Standard for Calibration of Electromagnetic Field Sensors and Probes (Excluding Antennas) from 9 kHz to 40 GHz. (2013). IEEE Std 1309-2013 (Revision of IEEE Std 1309-2005). https://doi.org/10.1109/IEEESTD.2013.6673999
  • [18] Achtenberg, K., Mikołajczyk, J., Szabra, D., Prokopiuk, A., & Bielecki, Z. (2020). Review of peak signal detection methods in nanosecond pulses monitoring. Metrology and Measurement Systems, 27(2), 20-218. https://doi.org/10.24425/mms.2020.132770
  • [19] Kuchta, M., & Białek, R. (2020). Envelope converter for amplitude-modulated high-frequency signals. Przegląd Elektrotechniczny, 96(2), 150-153. https://doi.org/10.15199/48.2020.02.36
  • [20] Teledyne SP Devices. (June 2020). ADQ7DC Datasheet. https://www.spdevices.com/products/hardware/14-bit-digitizers/adq7dc.
  • [21] Willmott, C. J., & Matsuura, K. (2005). Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Climate Research, 30(1), 79-82. https://doi.org/10.3354/cr030079
  • [22] Brandt, S. (2014).Data Analysis: Statistical and Computational Methods for Scientists and Engineers. Springer International Publishing. https://doi.org/10.1007/978-3-319-03762-2
  • [23] Rećko, C. & Stec, B. (2018). Modification of microwave frequency detector characteristic with the use of phase shifter. Metrology and Measurement Systems, 25(4), 769-777. https://doi.org/10.24425/mms.2018.124885
Uwagi
1. The work was co-financed by the Polish National Centre for Research and Development as a part of the project No. DOB-1-3/1/PS/2014 entitled “Methods and approaches for protection from HPM pulses” and was devoted to the task "The concept of a portable instrument for measurements of high power electromagnetic fields".
2. Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8591a65c-d8ec-4602-8ddd-d6b3546af05f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.