PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of aluminium additives on selected detonation parameters of a bulk emulsion explosive

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Wpływ dodatku aluminium na wybrane parametry detonacyjne materiału wybuchowego emulsyjnego luzem
Języki publikacji
EN
Abstrakty
EN
The article presents an assessment of the influence of aluminium granules content on selected detonation parameters of a chemically sensitised bulk emulsion explosive. The analysis covered determination of relative explosive strength using a ballistic mortar and Trauzl blocks, free field air blast tests and detonation velocity measurements. Five types of emulsion explosives with differing aluminium content were tested at loadings of 0, 1, 3, 5 and 7%.
PL
W artykule dokonano oceny wpływu zawartości dodatku pyłu aluminiowego na wybrane parametry detonacyjne materiału wybuchowego emulsyjnego luzem uczulanego chemicznie. Analiza zawierała oznaczenie zdolności do wykonania pracy na wahadle balistycznym i w blokach ołowianych, pomiar ciśnienia fali podmuchu oraz pomiar prędkości detonacji. Do badań zastosowano pięć typów materiału wybuchowego emulsyjnego różniących się procentową zawartością aluminium, tj. 0, 1, 3, 5 i 7%.
Rocznik
Tom
Strony
99--113
Opis fizyczny
Bibliogr. 23 poz., fot., rys., tab.
Twórcy
  • NITROERG S.A., Plac A. Nobla 1, 43-150 Bieruń, Poland
  • Central Mining Institute, Plac Gwarków 1, 40-166 Katowice, Poland
  • KGHM CUPRUM Ltd. Research and Development Centre, 2-8 Sikorskiego Street, 53-659 Wrocław, Poland
Bibliografia
  • [1] Bluhm H.F. Ammonium Nitrate Emulsion Blasting Agent and Method of Preparing Same. Patent US 3447978, 1969.
  • [2] Bulk Emulsion Explosives Emerging as Replacement of Packaged Counterparts in Underground Mining Application. https://www.futuremarketinsights.com/press-release/emulsion-explosive-market [retrieved 10.06.2020].
  • [3] Vadhe P.P., Pawar R.B., Sinha R.K., Asthana S.N., Subhananda Rao A. Cast Aluminized Explosives (Review). Combust. Explos. Shock Waves 2008, 44(4): 461-477.
  • [4] Maranda A., Paszula J., Zawadzka-Małota I., Kuczyńska B., Witkowski W., Nikolczuk K., Wilk Z. Aluminum Powder Influence on ANFO Detonation Parameters. Cent. Eur. J. Energ. Mater. 2011, 8(4): 279-292.
  • [5] Zygmunt B. Detonation Parameters of Mixtures Containing Ammonium Nitrate and Aluminum. Cent. Eur. J. Energ. Mater. 2009, 6(1): 57-66.
  • [6] Maranda A., Papliński A., Gałęzowski D. Investigation on Detonation and Thermochemical Parameters of Aluminized ANFO. J. Energ. Mater. 2003, 21(1): 1-13.
  • [7] Grishkin A.M., Dubnov L.V., Davidov V.Y., Levshina Y.A., Mikhailova T.N. Effect of Powdered Aluminum Additives on the Detonation Parameters of High Explosives. Combust. Explos. Shock Waves 1993, 29(2): 239-241.
  • [8] Bednarczyk E., Maranda A., Paszula J., Papliński A. Studies of Effect of Aluminium Powder on Selected Parameters of Emulsion Explosive Sensitized with Microballoons. CHEMIK 2016, 70(1): 41-50.
  • [9] Makhov M.N. Effect of Aluminum and Boron Additives on the Heat of Explosion and Acceleration Ability of High Explosives. Russ J. Phys. Chem. B 2015, 9(1): 50-55.
  • [10] Mishra A.K., Agrawal, H., Raut M. Effect of Aluminum Content on Detonation Velocity and Density of Emulsion Explosives. J. Mol. Model. 2019, 25(3), 70: 1-5.
  • [11] Qian H., Wu H.B., Xing H.D., Xia M.M. Effect of Aluminum Content and Particle Size on the Power of Emulsion Explosives. Chin. J. Explos. Propell. 2017, 40(1): 40-44.
  • [12] Mendes R., Ribeiro J.B., Plaksin I., Campos J. Non Ideal Detonation of Emulsion Explosives Mixed with Metal Particles. AIP Conf. Proc. 2012, 1426(1): 267-270.
  • [13] Paszula J., Trzciński W., Sprzątczak K. Detonation Performance of Aluminum – Ammonium Nitrate Explosives. Cent. Eur. J. Energ. Mater. 2008, 5(1): 3-11.
  • [14] Satonkina N.P., Bordzilovsky S.A., Danilko D.A., Ershov A.P., Karakhanov S.M., Plastinin A.V., Rafeichik S.I., Yunoshev A.S. Influence of Aluminum on the Characteristics of Detonating Emulsion Explosives. J. Phys. Conf. Series 2018, 1128(1): 012063.
  • [15] Biegańska J. Using Nitrocellulose Powder in Emulsion Explosives. Combust. Explos. Shock Waves 2011, 47(3): 366-368.
  • [16] Mertuszka P., Kramarczyk B. The Impact of Time on the Detonation Capacity of Bulk Emulsion Explosives Based on Emulinit 8L. Propellants Explos. Pyrotech. 2018, 43(8): 799-804.
  • [17] PN-C-86035:1999: Explosives – Determination of Relative Explosive Strength by Ballistic Mortar. (in Polish) 1999.
  • [18] PN-C-86037:2000: Explosives – Determination of Explosive Strength in a Lead Block. (in Polish) 2000.
  • [19] PN-EN 13631-14:2005: Explosives for Civil Uses – High Explosives – Part 14: Determination of Velocity of Detonation. (in Polish) 2005.
  • [20] Mertuszka P., Pytlik M. Analysis and Comparison of the Continuous Detonation Velocity Measurement Method with the Standard Method. Mater. Wysokoenerg. (High Energy Mater.) 2019, 11(2): 63-72.
  • [21] Steckiewicz A., Trzciński W.A. Investigation of Blast Wave Characteristics Produced by Improvised Explosive Charges. (in Polish) Biuletyn WAT 2009, 58(2): 217-230.
  • [22] Ullah A., Ahmad F., Jang H., Kim S., Hong J. Review of Analytical and Empirical Estimations for Incident Blast Pressure. KSCE J. Civ. Eng. 2017, 21: 2211-2225.
  • [23] Krewski D., Yokel R.A., Nieboer E., Borchelt D., Cohen J., Harry J., Kacew S., Lindsay J., Mahfouz A.M., Rondeau V. Human Health Risk Assessment for Aluminum, Aluminum Oxide, and Aluminum Hydroxide. J. Toxicol. Environ. Health Sci. B 2007, 10(1): 1-269.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-85901876-231f-46c9-9dbe-c74d50b108a1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.