Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In recent years, there has been a surge in Computational Fluid Dynamics (CFD) research into how urban morphology affects ventilation in cities. However, studies are scattered, with varying parameter definitions, limiting their application in architectural and urban design. This article aims to review and assess the relevance of geometric parameters studied in aerodynamics field to urban planning and architectural design in polish conditions. By reviewing previous publications on morphological parameters in wind studies, it evaluates their recognition and potential for their implementation in urban and architectural design in Polish conditions. Comparisons are made between these parameters and those commonly used in architectural and urban theory and practices in Poland. Results reveal minimal convergence, incorporating other parameters requires interdisciplinary research and significant planning procedure changes. This highlights the need for detailed interdisciplinary research and substantial planning changes to fully integrate CFD results into architectural and urban design practice in Poland.
Czasopismo
Rocznik
Tom
Strony
83--98
Opis fizyczny
Bibliogr. 57 poz.
Twórcy
- MSc; Gdańsk University of Technology, Faculty of Architecture, Narutowicza 11/12, 80-233 Gdańsk, Polan
autor
- Associate Prof.; Gdańsk University of Technology, Faculty of Architecture, Narutowicza 11/12, 80-233 Gdańsk, Poland
Bibliografia
- [1] Zielonko-Jung, K. (2020). Analysis of wind conditions around a building development as a part of its form designing process, a case study. Architecture, Civil Engineering, Environment, 12 (4), 51-58. https://doi.org/10.21307/acee-2019-051
- [2] Jo, S. J., Jones, J., & Grant, E. (2018). Trends in the application of CFD for architectural design.
- [3] Badach, J., & Li, W. (2021). Estimating the impact of the urban structure on air quality and its practical implications: Historical perspective and a review of recent trends.
- [4] Wei, D., Hu, X., Chen, Y., Li, B., & Chen, H. (2021). An Investigation of the Quantitative Correlation between Urban Spatial Morphology Indicators and Block Wind Environment. Atmosphere, 12(2), 234. https://doi.org/10.3390/atmos12020234
- [5] Krautheim, M., Pasel, R., Pfeiffer, S., & Schultz- Granberg, J. (Eds.). (2014). City and wind: Climate as an architectural instrument. DOM publ.
- [6] Dz. U. 2003 Nr 80 poz. 717 USTAWA z dnia 27 marca 2003 r. O planowaniu i zagospodarowaniu przestrzennym(ACT of 27 March 2003 on spatial planning and development).
- [7] Oke, T. R., Mills, G., Christen, A., & Voogt, J. A. (2017). Urban Climates (1st ed.). Cambridge University Press. https://doi.org/10.1017/9781139016476
- [8] Dz.U.2022.0.1225 t.j. - Rozporządzenie Ministra Infrastruktury z dnia 12 kwietnia 2002 r. W sprawie warunków technicznych, jakim powinny odpowiadać budynki i ich usytuowanie (Regulation of the Minister of Infrastructure of 12 April 2002 on the technical conditions to be met by buildings and their location).
- [9] Feng, W., Ding, W., Fei, M., Yang, Y., Zou, W., Wang, L., & Zhen, M. (2021). Effects of traditional block morphology on wind environment at the pedestrian level in cold regions of Xi’an, China. Environment, Development and Sustainability, 23(3), 3218-3235. https://doi.org/10.1007/s10668-020-00714-0
- [10] Palusci, O., Monti, P., Cecere, C., Montazeri, H., & Blocken, B. (2022). Impact of morphological parameters on urban ventilation in compact cities: The case of the Tuscolano-Don Bosco district in Rome. Science of The Total Environment, 807, 150490. https://doi.org/10.1016/j.scitotenv.2021.150490
- [11] Mei, S.-J., Hu, J.-T., Liu, D., Zhao, F.-Y., Li, Y., Wang, Y., & Wang, H.-Q. (2017). Wind driven natural ventilation in the idealized building block arrays with multiple urban morphologies and unique package building density. Energy and Buildings, 155, 324-338. https://doi.org/10.1016/j.enbuild.2017.09.019
- [12] Wang, W., Yang, T., Li, Y., Xu, Y., Chang, M., & Wang, X. (2020). Identification of pedestrian-level ventilation corridors in downtown Beijing using large- eddy simulations. Building and Environment, 182, 107169. https://doi.org/10.1016/j.buildenv.2020.107169
- [13] Yang, J., Shi, B., Zheng, Y., Shi, Y., & Xia, G. (2020). Urban form and air pollution disperse: Key indexes and mitigation strategies. Sustainable Cities and Society, 57, 101955. https://doi.org/10.1016/j.scs.2019.101955
- [14] Wagner, Robert F. (1961). Zoning maps and resolution. The city of New York.
- [15] Gandemer, J. (1978). Discomfort due to wind near buildings: Aerodynamic concepts (NBS TN 710-9; 0 ed., p. NBS TN 710-9). National Bureau of Standards. https://doi.org/10.6028/NBS.TN.710-9
- [16] Yin, S., Lang, W., & Xiao, Y. (2019). The synergistic effect of street canyons and neighbourhood layout design on pedestrian-level thermal comfort in hot- humid area of China. Sustainable Cities and Society, 49, 101571. https://doi.org/10.1016Zj.scs.2019.101571
- [17] Hu, C.-B., Zhang, F., Gong, F.-Y., Ratti, C., & Li, X. (2020). Classification and mapping of urban canyon geometry using Google Street View images and deep multitask learning. Building and Environment, 167, 106424. https://doi.org/10.1016Zj.buildenv.2019.106424
- [18] Chan, A. T., Au, W T. W, & So, E. S. P. (2003). Strategic guidelines for street canyon geometry to achieve sustainable street air quality - part II: Multiple canopies and canyons. Atmospheric Environment, 37(20), 2761-2772. https://doi.org/10.1016/S1352-2310(03)00252-8
- [19] Hang, J., Li, Y., Sandberg, M., & Claesson, L. (2010). Wind conditions and ventilation in high-rise long street models. Building and Environment, 45(6), 1353-1365. https://doi.org/10.1016/j.buildenv.2009.11.019
- [20] Hang, J., Sandberg, M., Li, Y., & Claesson, L. (2010). Flow mechanisms and flow capacity in idealized longstreet city models. Building and Environment, 45(4), 1042-1053. https://doi.org/10.1016/j.buildenv.2009.10.014
- [21] Miao, C., Yu, S., Hu, Y., Zhang, H., He, X., & Chen, W. (2020). Review of methods used to estimate the sky view factor in urban street canyons. Building and Environment, 168, 106497. https://doi.org/10.1016/j.buildenv.2019.106497
- [22] Yang, F., Qian, F., & Lau, S. S. Y. (2013). Urban form and density as indicators for summertime outdoor ventilation potential: A case study on high-rise housing in Shanghai. Building and Environment, 70, 122-137. https://doi.org/10.1016/j.buildenv.2013.08.019
- [23] Chen, L., Ng, E., An, X., Ren, C., Lee, M., Wang, U., & He, Z. (2012). Sky view factor analysis of street canyons and its implications for daytime intra urban air temperature differentials in high rise, high density urban areas of Hong Kong: A GIS based simulation approach. International Journal of Climatology, 32(1), 121-136. https://doi.org/10.1002/joc.2243
- [24] Erell, E., Pearlmutter, D., & Williamson, T. J. (2015). Urban microclimate: Designing the spaces between buildings (Fist issued in paperback). Earthscan from Routledge.
- [25] Kurppa, M., Hellsten, A., Auvinen, M., Raasch, S., Vesala, T., & Jarvi, L. (2018). Ventilation and Air Quality in City Blocks Using Large-Eddy Simulation - Urban Planning Perspective. Atmosphere, 9(2), 65. https://doi.org/10.3390/atmos9020065
- [26] Poćwierz, M., & Zielonko-Jung, K. (2021). An analysis of wind conditions at pedestrian level in the selected types of multi-family housing developments. Environmental Fluid Mechanics, 21 (1), 83-101. https://doi.org/10.1007/s10652-020-09763-5
- [27] Wen, H., & Malki-Epshtein, L. (2018). A parametric study of the effect of roof height and morphology on air pollution dispersion in street canyons. Journal of Wind Engineering and Industrial Aerodynamics, 175, 328-341. https://doi.org/10.1016/jjweia.2018.02.006
- [28] Takano, Y., & Moonen, P. (2013). On the influence of roof shape on flow and dispersion in an urban street canyon. Journal of Wind Engineering and Industrial Aerodynamics, 123, 107-120. https://doi.org/10.1016/jjweia.2013.10.006
- [29] Kastner-Klein, P., Berkowicz, R., & Britter, R. (2004). The influence of street architecture on flow and dispersion in street canyons. Meteorology and Atmospheric Physics, 87(1-3). https://doi.org/10.1007/s00703-003-0065-4
- [30] An, K., Wong, S.-M., & Fung, J. C.-H. (2019). Exploration of sustainable building morphologies for effective passive pollutant dispersion within compact urban environments. Building and Environment, 148, 508-523. https://doi.org/10.1016/j.buildenv.2018.11.030
- [31] Ku, C.-A., & Tsai, H.-K. (2020). Evaluating the Influence of Urban Morphology on Urban Wind Environment Based on Computational Fluid Dynamics Simulation. ISPRS International Journal of Geo-Information, 9(6), 399. https://doi.org/10.3390/ijgi9060399
- [32] Kubota, T., Miura, M., Tominaga, Y., & Mochida, A. (2008). Wind tunnel tests on the relationship between building density and pedestrian-level wind velocity: Development of guidelines for realizing acceptable wind environment in residential neighborhoods. Building and Environment, 43(10), 1699-1708. https://doi.org/10.1016/j.buildenv.2007.10.015
- [33] Lau, K. K.-L., Ng, E., Ren, C., Ho, J. C.-K., Wan, L., Shi, Y., Zheng, Y., Gong, F., Cheng, V., Yuan, C., Tan, Z., & Wong, K. S. (2018). Defining the environmental performance of neighbourhoods in high-density cities. Building Research & Information, 46(5), 540-551. https://doi.org/10.1080/09613218.2018.1399583
- [34] Wang, W., Yang, T., Li, Y., Xu, Y., Chang, M., & Wang, X. (2020). Identification of pedestrian-level ventilation corridors in downtown Beijing using large- eddy simulations. Building and Environment, 182, 107169. https://doi.org/10.1016/j.buildenv.2020.107169
- [35] Javanroodi, K., Mahdavinejad, M., & Nik, V. M. (2018). Impacts of urban morphology on reducing cooling load and increasing ventilation potential in hot-arid climate. Applied Energy, 231, 714-746.
- [36] Palusci, O., & Cecere, C. (2022). Urban Ventilation in the Compact City: A Critical Review and a Multidisciplinary Methodology for Improving Sustainability and Resilience in Urban Areas. Sustainability, 14(7), 3948. https://doi.org/10.3390/su14073948
- [37] Peng, Y., Gao, Z., & Ding, W (2017). An Approach on the Correlation between Urban Morphological Parameters and Ventilation Performance. Energy Procedia, 142, 2884-2891. https://doi.org/10.1016Zj.egypro.2017.12.412
- [38] Park, C., Ha, J., & Lee, S. (2017). Association between Three-Dimensional Built Environment and Urban Air Temperature: Seasonal and Temporal Differences. Sustainability, 9(8), 1338. https://doi.org/10.3390/su9081338
- [39] Mittal, H., Sharma, A., & Gairola, A. (2018). A review on the study of urban wind at the pedestrian level around buildings. Journal of Building Engineering, 18, 154-163. https://doi.org/10.1016/j.jobe.2018.03.006
- [40] Ng, E., Yuan, C., Chen, L., Ren, C., & Fung, J. C. H. (2011). Improving the wind environment in high-density cities by understanding urban morphology and surface roughness: A study in Hong Kong. Landscape and Urban Planning, 101 (1), 59-74. https://doi.org/10.1016/jJandurbplan.2011.01.004
- [41] Ramponi, R., Blocken, B., De Coo, L. B., & Janssen, W. D. (2015). CFD simulation of outdoor ventilation of generic urban configurations with different urban densities and equal and unequal street widths. Building and Environment, 92, 152-166. https://doi.org/10.1016/j.buildenv.2015.04.018
- [42] Zhang, A., Gao, C., & Zhang, L. (2005). Numerical simulation of the wind field around different building arrangements. Journal of Wind Engineering and Industrial Aerodynamics, 93(12), 891-904. https://doi.org/10.1016/j.jweia.2005.09.001
- [43] Adolphe, L. (2001). A Simplified Model of Urban Morphology: Application to an Analysis of the Environmental Performance of Cities. Environment and Planning B: Planning and Design, 28(2), 183-200. https://doi.org/10.1068/b2631
- [44] Behzadfar, M. (2017). GENERIC FLOWS OF SUSTAINABLE URBAN FORM: An Investigation On Integrated Interactions Between Energy And Information Flows In The Context Of Urban Form. The Case Of Isfahan.
- [45] Afiq, W. M., Azwadi, C. S. N., & Saqr, K. M. (2012). Effects of buildings aspect ratio, wind speed and wind direction on flow structure and pollutant dispersion in symmetric street canyons: A review. International Journal of Mechanical and Materials Engineering, 7, 158-165.
- [46] Chen, G., Charlie Lam, C. K., Wang, K., Wang, B., Hang, J., Wang, Q., & Wang, X. (2021). Effects of urban geometry on thermal environment in 2D street canyons: A scaled experimental study. Building and Environment, 198, 107916. https://doi.org/10.1016/j.buildenv.2021.107916
- [47] Hamdan, D. M. A., & De Oliveira, F. L. (2019). The impact of urban design elements on microclimate in hot arid climatic conditions: Al Ain City, UAE. Energy and Buildings, 200, 86-103. https://doi.org/10.1016/j.enbuild.2019.07.028
- [48] Ahmad, K., Khare, M., & Chaudhry, K. K. (2005). Wind tunnel simulation studies on dispersion at urban street canyons and intersections - A review. Journal of Wind Engineering and Industrial Aerodynamics, 93(9), 697-717. https://doi.org/10.1016/j.jweia.2005.04.002
- [49] Chan, A. T., So, E. S. P., & Samad, S. C. (2001). Strategic guidelines for street canyon geometry to achieve sustainable street air quality. Atmospheric Environment.
- [50] Trindade Da Silva, F., Reis, N. C., Santos, J. M., Goulart, E. V, & Engel De Alvarez, C. (2021). The impact of urban block typology on pollutant dispersion. Journal of Wind Engineering and Industrial Aerodynamics, 210, 104524. https://doi.org/10.1016/j.jweia.2021.104524
- [51] Matzarakis, A., & Matuschek, O. (2011). Sky view factor as a parameter in applied climatology rapid estimation by the SkyHelios model. Meteorologische Zeitschrift, 20(1), 39-45. https://doi.org/10.1127/0941-2948/2011/0499
- [52] Ren, C., Cai, M., Li, X., Shi, Y., & See, L. (2020). Developing a rapid method for 3-dimensional urban morphology extraction using open-source data. Sustainable Cities and Society, 53, 101962. https://doi.org/10.1016/j.scs.2019.101962
- [53] Peng, Y., Gao, Z., Buccolieri, R., Shen, J., & Ding, W. (2021). Urban ventilation of typical residential streets and impact of building form variation. Sustainable Cities and Society, 67, 102735. https://doi.org/10.1016/j.scs.2021.102735
- [54] Zahid Iqbal, Q. M., & Chan, A. L. S. (2016). Pedestrian level wind environment assessment around group of high-rise cross-shaped buildings: Effect of building shape, separation and orientation. Building and Environment, 101, 45-63. https://doi.org/10.1016/j.buildenv.2016.02.015
- [55] Huang, Y., Lei, C., Liu, C.-H., Perez, P., Forehead, H., Kong, S., & Zhou, J. L. (2021). A review of strategies for mitigating roadside air pollution in urban street canyons. Environmental Pollution, 280, 116971. https://doi.org/10.1016/j.envpol.2021.116971
- [56] Nosek, Ś., Kukacka, L., Kellnerová, R., Jurcáková, K., & Janour, Z. (2016). Ventilation Processes in a Three-Dimensional Street Canyon. Boundary-Layer Meteorology, 159(2), 259-284. https://doi.org/10.1007/s10546-016-0132-2
- [57] Wejchert, K. (2010). Elementy kompozycji urbanistycznej. Arkady.
- MSc; Gdańsk University of Technology, Faculty of Architecture, Narutowicza 11/12, 80-233 Gdańsk, Poland
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-858f88df-0b6d-4102-875e-b187fa47544a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.