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Abstract: Mould that develops on moistened building barriesra major cause of the Sick Building Syndrome
(SBS). Fungi emit Volatile Organic Compounds (VO@at can be detected in the indoor air using sévera
techniques of detection e.g. chromatography botw@ing gas sensors arrays. All array sensors gengarticular
electric signals that ought to be analysed usingenly selected statistical methods of interpretatiThis work is
focused on the attempt to apply unsupervised apdrsgised statistical classifying models in the eatibn of
signals from gas sensors matrix to analyse theaampled from the headspace of various types obtiilding
materials at the different level of contaminatian &lso clean reference materials.
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Introduction

World Health Organization (WHO) reports that thelify of indoor air has a greater
impact on our health than outdoor air. The majarseaof poor quality of indoor air is
mould threat that develops on building barrierss Itaused by poor quality of ventilation
systems and improper horizontal and vertical ismtatagainst water [1]. Mold that
develops on building materials not only affectsirtieechanical properties but also have
a negative impact on health of people in mouldymso Exposure to these negative
conditions may be related to Sick Building Syndrqi®BS). Many studies have shown that
indoor mould growth is common in the dwellings, esplly where dampness in the
buildings occurs [2-6]. The increase in the SBS yms is related to the research of
building dampness. It approximately doubles thek rif health effects [3, 7, 8].
Non-specific symptoms included in SBS mainly conceheadache, throat, muscles,
memory and sleep disorders, general weaknesspitity, skin irritation, irritation of the
mucous membranes of the eyes and nose [3, 9]. Howthe most serious hazards caused
by moulds include allergies, mycoses, mycotoxicosiang hemosiderosis and
immunological reactions. They are caused by thelanthat comes from the buildings and
identified as moulds belonging to the following gem Aspergillus Penicillium
Cladosporium Alternaria, AcremoniumUlocladium StachybotrysRhizopusMucor [2, 3,

6, 9]. It has been recorded that people stayirtgegrmouldy buildings for a longer period of
time might suffer from allergies to moulds prestr@rein. Most common among them are
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the allergies to antigens &fenicillium chrysogenum, P.expansum, Alternarigeralata,
Cladosporium cladosporioides, Aspergillus nigerdA. flavus Mould allergies have been
confirmed in skin tests and in tests for the presesf anti-mould antibodies asIgE against
the moulds [3]. According to the other researchepspthe biologically active agents
produced by fungi are (& 3) $-glucan (a component of the fungal cell wall) adatile
compounds - Microbial Volatile Organic CompoundsM®ICs) which are the products of
the microbes' primary and secondary metabolisn1(3, The research showed that indoor
levels of some MVOCs were positively related witBBSS The levels of airborne
microorganisms and some MVOCs were higher in dngdliwith dampness and moulds
[7]. MVOC:s include a variety of chemical compoundgy. alcohols, aldehydes, ketones,
amines, terpenes, sulphur compounds, chlorinatddbbgrbons. MVOCs emitted by fungi
can be markers indicating the mould developmenbadnsl In contaminated materials,
numerous MVOC compounds produced specifically ingal metabolism were detected
and have been identified as: 2-ethylhexanol, 1reétel, 3-heptanol, 3-methyl-1-butanol,
2-methyl-1-butanol, 1,3-octadiene, 2-(5H)-furanon2sheptene, limonenega-pinene,
2-methylisoborneol, 4-heptanone, 2-methylfuran, &hyilfuran, dimethyldisulfide,
methoxybenzene, camphor, terpenoid and sesquiesgdéd-13]. Some MVOCs may also
be precursors of mycotoxins. A specific set of sésgpene hydrocarbons, including
aristolochenean, were investigated in biosyntheiBR toxin byPenicillium roqueforti
Therefore also the sesquiterpene hydrocarbon patted especially aristolochene can be
used as volatile markers for detecting the prooéssmdergoing biosynthesis of PR toxin
by P. roqueforti[14]. Detecting this specific MVOCs emitted by nidsidemonstrated that
this approach is both reliable and quick as furggaith can be detected before any visible
signs of contamination occur [12]. The type of progld MVOCs depends on the growth
medium of the fungus. There were significant défeges in the spectrum of MVOCs
produced during the mould growth on paper, buildimgterials and microbiological media.
It was found that building materials are mediaMdfOCs production by moulds [3].

Fungal contamination is normally evaluated usirejmdard mycological or molecular
methods, such as Polymerase Chain Reaction, Gasmatography-Mass Spectrometry,
High-Performance Liquid Chromatography-Mass Specttoy, but they are
time-consuming and require a lot of manual labMoreover, there are numerous mycelial
hyphae fragments in the indoor air, smaller thapni, which cannot be measured with
commonly applied methods for air microflora anadyg3]. Early detection techniques
allow to quickly estimate the mould contaminatidhey usually involve the application of
gas sensor arrays, i.e. electronic noses.

Signals conducted from the electronic noses aregébtors of resistances measured in
time on particular number of sensors. In order lassify signals, there were used the
supervised and unsupervised techniques of mackammihg. Supervised learning means
that in the process of building model we are abledrrect predicted value based on the
knowledge from the “supervisor” or the “teacherhefwhole sample is divided into two
parts - training sample and test sample. In botltheMm, there is an information about
proper class membership which was used to veriffdeh@rediction. Unsupervised
methods of machine learning don't use this infoiamatind they simply group observations
into the homogeneous classes.
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The aim of this paper is to show, that both typesachine learning techniques are
appropriate to assess mould contamination in mgkli

Materials and methods

The measurements were conducted using eight MO& tgsistance semiconductor
sensors. The applied sensors were produced by TigBoF series 2600: TGS2600-B00,
TGS2602-B00, TGS2610-C00, TGS2610-D00, TGS2611-C00,GS2611-E00,
TGS2612-D00, TGS2620-C00. They are used in manyeimmpntations of gas sensors
arrays, because they are cheap, reliable, smalwétidlow electric power consumption
[15, 16].

The experiment was conducted in four selected roweitisa different level of mould
threat (bedroom, wardrobe, basement, house). Taupeothe reference material there were
collected samples of clean and synthetic air asd abn-stricken building materials with
the mass of 100 g: gypsum board, aerated conenetebrick. In Suchorab et al. [17] there
is more information about collecting the data.

A dataset of readouts from the e-nose consistegistance levels measured in time.
For our analysis was chosen last 30 seconds of ggohl since they are stable in sense of
the electric signal level.

In this paper, there were used two methods of wersiged learning such as
hierarchical cluster analysis and self-organizingpmalso known as Kohonen Neural
Network [18]. Those techniques are usually usedhi@ wide range of classification
problems without knowledge about the humber ofsgaghat have to be analyzed in the
particular set of observations and without inforimaton the real memberships of them
[19]. Assessing a number of homogenous groups wagucted based on Ward method of
agglomeration and Euclidean metric.

The supervised methods of machine learning usebisnresearch were Partial Least
Squares Discriminant Analysis (PLS-DA) [20] and @&mlized Linear Models with
Regularized Path (GLMNET) [21]. The use of thesedats was dictated by the fact that
there were some redundancies between the sensdhsntgthods deal with this problem in
a different way, the first by reducing the dimemsitity of space with the PLS method, and
the other by introducing parameters that remove dimgularity of the matrix of the
discriminant model.

In order to find the best fit in both cases, 1@fatoss-validation was performed on
different sets of tuning parameters. All measuresarere scaled for the analysis purposes.

Results and discussion

All the calculations and visualizations were doneRi environment, which is the very
popular language of programming adapted for stedishnalysis [22].

The dispersion of signals within environments fdr sensors expressed by the
coefficient of variation CV) are very small (Table 1), so even tiny differenae electric
signal level between environments could be sigaific This enables homogeneity of the
individual observations due to the level of resistareadings on the individual sensors, and
thus they can be classified on this basis.
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Table 1
Coefficients of variation of particular measurensent

Environment | bedroom | wardrobe | house | basement] gg/psum aerated brick d_ecayed C"?a” ck_ean
oard | concrete timber | airl | air2

2600_b00 0.87 0.47 0.02 0.02 0.64 0.4B 0{36 0.p8 39 0.0.04
2602_b00 0.19 0.13 0.07 0.05 0.1y 0.1p 0[05 0.15 04 1.0.11
2610_c00 1.11 0.48 0.02 0.04 0.26 0.14 0}11 0.p3 13 0.0.05
2610_d00 0.51 0.27 0.0 0.06 0.39 0.2 0{19 0.F1 50 0.0.44
2611 _c00 1.09 0.52 0.02 0.06 0.19 0.0B 0{07 0.22 08 0.0.04
2611 _e00 0.31 0.22 0.09 0.17 0.24 0.20 0.15 0.0 04 0.0.02
2612_d00 0.49 0.27 0.0 0.07 0.38 0.2¢ 0{17 0.55 44 0.0.49
2620_c00 1.24 0.57 0.0 0.02 0.58 0.48 0}33 0.3 33 0.0.04
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The method of hierarchical cluster analysis grotifgsobservations into four classes.
The number of clusters was obtained by the anabfsiendrogram (Fig. 1a), which is tree
type method of visualization of the differenceswsstn observations. The choice of four
clusters is quite obvious and gave rather homogergroups of readings. In the first
cluster, there are all observations from bedrooargdwbe, gypsum board, aerated concrete
and the brick, so this cluster consists non-strickemples or with a low level of mould
contamination. The second cluster contains all oradir high contaminated environments
like house and basement. Totally stricken sampta® flecayed timber are grouped in the
third cluster and the last group contains referesamples with clean air. The above
clustering was visualized in two-dimensional spafcprincipal components (Fig. 1b).

The self-organizing map was performed on 20x20 nodésteurons. All observations
from eight-dimensional space were mapped on thid gia neural network and then
grouped into six homogenous class shown below @igThe membership of particular
clusters is the following: cluster 1 - aerated gete, gypsum board, brick and bedroom,
cluster 2 - wardrobe, cluster 3 - house and baserdester 4 - clean air 1, cluster 5 - clean
air 2 and cluster 6 - decayed timber. This classiifon is even more homogenous than the
obtained from hierarchical cluster analysis. Th&tidction between clean air 1 and clean
air 2 is noted because one them is a fresh airtlaadther is a synthetic one. There is
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a group of non-stricken samples (cluster 1), lowelecontaminated samples from the
wardrobe, medium and highly stricken - house amdhthisement. The last group contains
the totally stricken samples - decayed timber.

Clusters

Fig. 2. Self-organizing map with six clusters. SmirOwn elaboration

For the purpose of supervised machine learning ogistha certain organoleptic
evaluation of the state of mould contamination @ntioned samples was introduced. It's
quite similar to the distinction made by SOM, witlo remarks. Samples of clean air are
together and cluster 3 of the medium and high lef@hould contamination is divided into
two class. This new variable was used in training &uning models. The sample was
divided into two parts in 2/3 proportion for trasample.

A common method for describing the performance aflassification model is the
confusion matrix [23]. This is a simple cross-taign of the observed and predicted
classes for the data. Diagonal cells denote cabesenthe classes are correctly predicted
while the off-diagonals illustrate the number ofoes for each possible case. The simplest
metric is the overall accuracy rate, which reflgtis agreement between the observed and
predicted classes.

Based on 10-fold cross-validation with 5 repeats Watermined that the number of
partial coordinates in PLS-DA needed for best ft 3. Performance of PLS-DA
classification measured by confusion matrix is @etf This means that there is no any
observation which was misclassified, both in thening and test sample. 95% confidence
interval for accuracy in this model equals (0.9ZPwhich shows very good classification
potential.
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The second model (GLMNET) was also build and tunadthe training sample via
cross-validation. The best fit was obtained witkr O (mixing percentage) antl= 0.107
(regularization parameter).

Mixing Percentage [-]
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Fig. 3. Relations between accuracy and model paeameSource: Own elaboration

The accuracy of this model was perfect with 95% fidemce interval (0.98, 1).
Obviously, true positive rate and true negative fat all classes known as sensitivity and
specificity, are one, which means that there isrdegt prediction in all classes.

Summary and conclusions

The electronic nose can be used in early detet¢icimiques of mould contamination
in the buildings. Patterns with varying degreesnaduld contamination are properly
recognized by classification models. Both typesnufdel supervised and unsupervised
show very good classification quality. The reswftghis study look very optimistic since
signals were characterized by very small dispersionverify the performance of the tested
models and check their applicability it is plannedmake similar investigations using
completely new and different data congaing moree@i signals.

Tested methods are applicable and can be usedafty @etection of mould threat.
They are perfect in area of data presented inpiyier.
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Abstrakt: Grzyb rozwijagcy sk na scianach budynkdéw jest gtéwnym powodem zjawiska,ré&kt@azwano
Syndromem Chorego Budynku. Wolne zeki organiczne emitowane przez grzyby mduy¢ wykryte r&nymi
metodami, m.in. na podstawie chromatografii, aledaza pomog matryc czujnikbw gazowych. Wszystkie tego
typu narzdzia generyj sygnaly elektryczne, ktére raga analizowd za pomog odpowiednich technik
statystycznych. Praca skupiag¢ sha zastosowaniu nadzorowanych i nienadzorowanythntk uczenia
maszynowego w ocenie sygnatu pochmegio z elektronicznego nosa.

Stowa kluczowe:elektroniczny nos, poganie grzybem, klasyfikacja, macierzthhych klasyfikacji, skalowanie
wielowymiarowe



