PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of thermal loading due to laser pulse on 3-d problem of micropolar thermoelastic solid with energy dissipation

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of this paper is to introduce the Green-Naghdi (G-N) theory of type III (with energy dissipation) to study the effect of thermal loading due to laser pulse on generalized micropolar thermoelastic homogeneous isotropic medium in three dimensions. The normal mode analysis technique is used to solve the resulting non-dimensional equations of the problem. Numerical results for the displacement, thermal stress, strain, temperature, couple stresses and micro-rotation distributions are represented graphically to display the effect of the laser pulse on the resulting quantities. Comparisons are made within the theory in the presence and absence of the laser pulse.
Rocznik
Strony
679--701
Opis fizyczny
Bibliogr. 36 poz., wykr.
Twórcy
  • Department of Mathematics, Faculty of Science, Zagazig University, P.O. Box 44519, Egypt
  • Taif University, 888, Taif, Saudi Arabia
autor
  • Department of Engineering Mathematics and Physics, Higher Institute of Engineering, Shorouk Academy, Cairo, Egypt
autor
  • Department of Mathematics, Faculty of Science, King Khalid University, 9004, Abha, Saudi Arabia
Bibliografia
  • [1] Boit, M.: Thermoelasticity and Irreversible Thermodynamics, J. Appl. Phys., 27, 240-251, 1956.
  • [2] Lord, H. and Shulman, Y. A.: Generalized dynamical theory of thermoelasticity, J. Mech. and Phys. of Solids, 15, 299-309, 1967.
  • [3] Green, A. E. and Lindsay, K. A.: Thermoelasticity, J. Elasticity, 2, 1-7, 1972.
  • [4] Catteneo, C.: A form of heat conduction equation which eliminates the paradox of instantaneous propagation, Compute Rendus, 247, 431-433, 1958.
  • [5] Othman, M. I. A.: Lord-Shulman theory under the dependence of the modulus of elasticity on the reference temperature in two dimensional generalized thermoelasticity, J. Therm. Stress., 25, 1027-1045, 2002.
  • [6] He T., Rao T., Shi S., Li H. and Ma Y.: Finite element method to generalized thermo- elastic problems with temperature-dependent properties, J. Appl. Sci., 13, 2156-2160, 2013.
  • [7] Othman, M. I. A. and Song, Y.: Reflection of magneto-thermoelastic waves with two relaxation times and temperature dependent elastic moduli, Appl. Math. Model., 32, 483-500, 2008.
  • [8] Green, A. E. and Naghdi, P. M.: A re-examination of the basic postulates of thermo-mechanics., Proc. Roy. Soc. Lond., Series A, 432, 171-194, 1991.
  • [9] Green, A. E. and Naghdi, P. M.: On undamped heat waves in an elastic solid, J. Thermal Stresses, 15, 1992, 253-264.
  • [10] Green, A. E. and Naghdi, P. M.: Thermoelasticity without energy dissipation, J. Elasticity, 31, 189-208, 1993.
  • [11] Othman, M. I. A. and Atwa, S. Y.: 2-D problem of a Mode-I crack for a generalized thermo-elasticity under Green-Naghdi theory, Meccanica, 48, 1543-1551, 2013.
  • [12] Othman, M. I. A. and Atwa, S. Y.: Two-dimensional problem of a fiber-reinforced anisotropic thermoelastic medium. Comparison with the Green-Naghdi theory, Computational Mathematics and Modeling, 24, 307-325, 2013.
  • [13] Eringen, A. C.: Linear Theory of micropolar elasticity, J. Appl. Math. and Mech., 15, 909-923, 1966.
  • [14] Eringen, A. C.: Foundations of micropolar thermoelasticity, Udline Course and Lectures 23, International Centre for Mechanical Science, Springer, Berlin, Germany, 1970.
  • [15] Eringen, A. C.: Microcontinuum field theories-I, Foundations and Solids, Springer, Berlin, Germany, 1999.
  • [16] Nowacki, W.: Theory of asymmetric elasticity, Pergamon, Oxford, UK, 1986.
  • [17] Dost, S. and Tabarrok, B.: Generalized micropolar thermoelasticity, Int. J. Eng. Sci., 16, 173-183, 1978.
  • [18] Chandrasekharaiah, D. S.: Heat-flux dependent micropolar thermoelasticity, Int. J. Eng. Sci., 24, 1389-1395, 1986.
  • [19] Boschi, E. and Iesan, D.: A generalized theory of linear micropolar thermoelasticity, Meccanica, 8, 154-157, 1973.
  • [20] Othman M. I. A, Tantawi, R. S. and Hilal, M. I. M.: Effect of initial stress and the gravity field on micropolar thermoelastic solid with microtemperatures, J. Theor. and Appl. Mech., 54, 847-857, 2016.
  • [21] Othman M. I. A and Song, Y. Q.: The effect of thermal relaxation and magnetic field on generalized micropolar thermoelastic medium, J. Appl. Mech. and Tech. Phys., 57, 108-116, 2016.
  • [22] Kumar R. and Choudhary S.: Dynamical behavior of orthotropic micropolar elastic medium, J. Vib. and Control, 5, 1053-1069, 2002.
  • [23] Kumar R. and Choudhary S.: Response of orthotropic micropolar elastic medium due to time harmonic sources, Sadhana, 29, 83-92, 2004.
  • [24] Othman, M. I. A. and Atwa, S. Y.: Response of micropolar thermoelastic solid with voids due to various sources under Green-Naghdi theory, Acta Mechanica Solida Sinica, 25, 197-209, 2012.
  • [25] Othman, M. I. A. and Hasona, W. M., Abd-Elaziz, E. M.: The influence of thermal loading due to laser pulse on generalized micropolar thermoelastic solid with comparison of different theories, Multidiscipline Modeling in Materials and Structures, 10, 328-345, 2014.
  • [26] Othman M. I. A and Tantawi, R. S.: The effect of laser pulse and gravity field on thermoelastic medium under Green-Naghdi theory, Acta Mechanica, 227, 3571-3583, 2016.
  • [27] Kumar, R. and Kaur, M.: Effect of two temperatures and stiffness on waves propagating at the interface of two micropolar thermoelastic media, J. Eng. Phys. and Thermophysics, 88, 543-555, 2015.
  • [28] Al-Qahtani, H. M. and Datta, S. K.: Laser-generalized thermoelastic waves in an anisotropic infinite plate: exact analysis, J. Thermal Stresses, 31, 569-583, 2008.
  • [29] Sun, Y., Fang, D., Saka, M. and Soh, A. K.: Laser induced vibrations of microbeams under different boundary conditions, Int. J. Sol. and Struct., 45, 1993-2013, 2008.
  • [30] Wang, X. and Xu, X.: Thermoelastic wave induced by pulsed laser heating, Appl. Phys. A, 73, 107-114, 2001.
  • [31] Wang, X. and Xu, X.: Thermoelastic wave in metal induced by ultrafast laser pulses, J. Thermal Stresses, 25, 457-473, 2002.
  • [32] Youssef, H. M. and Al-Felali, A. S.: Generalized thermoelasticity problem of material subjected to thermal loading due to laser pulse, Appl. Math., 3, 142-146, 2012.
  • [33] Ronghou, X., Yanfeng, G. and Weiqin, L.: Study on generalized thermoelastic problem of semi-infinite plate heated locally by the pulse laser, International Journal of Engineering Practical Research, 3, 95-99, 2014.
  • [34] Othman, M. I. A., Zidan, M. E. M. and Hilal, M. I. M.: Effect of magnetic field on a rotating thermoelastic medium with voids under thermal loading due to laser pulse with energy dissipation. country-regionplace, Can. J. Phys., 10, 1-13, 2014.
  • [35] Kumar, R. and Kumar, A., Singh, D.: Interaction of laser beam with micropolar thermoelastic solid, Advances in Physics Theories and Applications, 40, 10-15, 2015.
  • [36] Tang, D. W. and Araki, N.: Wavy, wavelike, diffusive thermal responses of finite rigid slabs to high-speed heating of laser-pulses, Int. J. Heat Mass Trans., 42, 855-860, 1999.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8585181a-9660-472f-8970-55dc4bd62f77
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.