PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Efects of high-temperature thermal treatment on the porosity of red sandstone: an NMR analysis

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
High temperatures afect the physical properties of red sandstone seriously, especially the pores. Understanding its mechanism is of great signifcance in coal mining following underground gasifcation, geothermal energy utilization, and the deep burial of nuclear waste. Nuclear magnetic resonance (NMR) was used to detect pore structure characteristics, and scanning electron microscopy (SEM) and polarizing light microscopy (PLM) were used to mechanism of change. The transverse relaxation time (T2) and signal strengths of red sandstone treated at various temperatures were observed by NMR, and then, the pore situation can be obtained, and fnally, the infuence of temperature on the pore structure of red sandstone can be obtained. Microscopic photographs of the pores of red sandstone were obtained by SEM and PLM to assist in explaining the process of microstructural change, especially the infuences of temperature on pore characteristics and grain morphology and distribution. The researches indicate that after the heat treatment of red sandstone at 25–1300 °C, the pore and strength characteristics change in well-defned stages. Before 500 °C, the pore diameters and distribution range increase, but the porosity and internal grain structure do not change signifcantly. At 500–1000 °C, red sandstone micropores contract, mesopores and macropores develop, and strength decreases. After 1000 °C, the grains that comprise sandstone melt and fll many of the pores, decreasing porosity. The proportion of micropores decreases, while mesopores and macropores increase. In addition, a large number of bubbly holes appear in and on the sandstone, presumably caused by gases such as CO2, and water vapor from dehydrating grains. The changes in pore and cementation states with temperature are the main factors afecting the tensile strength of red sandstone.
Czasopismo
Rocznik
Strony
113--124
Opis fizyczny
Bibliogr. 45 poz.
Twórcy
autor
  • College of Geology and Environment, Xi’an University of Science and Technology, Xi’an, Shaanxi 710054, Chin
autor
  • College of Geology and Environment, Xi’an University of Science and Technology, Xi’an, Shaanxi 710054, Chin
autor
  • College of Geology and Environment, Xi’an University of Science and Technology, Xi’an, Shaanxi 710054, Chin
autor
  • College of Geology and Environment, Xi’an University of Science and Technology, Xi’an, Shaanxi 710054, Chin
autor
  • College of Geology and Environment, Xi’an University of Science and Technology, Xi’an, Shaanxi 710054, Chin
Bibliografia
  • 1. Abdulsamad F, Revil A, Ghorbani A, Toy V, Kirilova M, Coperey A, Duvillard P, Ménard G, Ravanel L (2019) Complex conductivity of graphitic schists and sandstones. J Geophys Res Solid Earth 124:8223–8249. https://doi.org/10.1029/2019JB017628
  • 2. Ausbrooks R, Hurley N, May A, Neese D (1999) Pore-size distributions in vuggy carbonates from core images, NMR, and capillary pressure. In: SPE annual technical conference and exhibition. https://doi.org/10.2118/56506-MS
  • 3. Bao H, Zhang G, Lan H, Yan C, Xu J, Xu W (2019) Geometrical heterogeneity of the joint roughness coefficient revealed by 3D laser scanning. Eng Geol. https://doi.org/10.1016/j.enggeo.2019.105415
  • 4. Bao H, Xu X, Lan H, Zhang G, Yin P, Yan C, Xu J (2020) A new joint morphology parameter considering the effects of micro-slope distribution of joint surface. Eng Geol. https://doi.org/10.1016/j.enggeo.2020.105734
  • 5. Borgia G, Brown S, Fantazzini P (1996) Nuclear magnetic resonance relaxivity and surface-to-volume ratio in porous media with a wide distribution of pore sizes. J Appl Phys 79(7):3656–3664. https://doi.org/10.1063/1.361194
  • 6. Cai Y, Liu D, Pan Z, Yao Y, Li J, Qiu Y (2013) Petrophysical characterization of chinese coal cores with heat treatment by nuclear magnetic resonance. Fuel 108:292–302. https://doi.org/10.1016/j.fuel.2013.02.031
  • 7. Clarkson C, Jensen J, Pedersen P, Freeman M (2012) Innovative methods for flow-unit and pore-structure analyses in a tight siltstone and shale gas reservoir. AAPG Bull 96(2):355–374. https://doi.org/10.1306/05181110171
  • 8. Dillinger A, Esteban L (2014) Experimental evaluation of reservoir quality in Mesozoic formations of the Perth Basin (Western Australia) by using a laboratory low field nuclear magnetic resonance. Mar Pet Geol 57:455–469. https://doi.org/10.1016/j.marpetgeo.2014.06.010
  • 9. Dunn K, Bergman J, Latorraca A (2002) Nuclear magnetic resonance: Petrophysical and logging applications. Nuclear magnetic resonance petrophysical and logging applications. Pergamon
  • 10. Fang T, Zhang L, Liu N, Zhang L, Wang W, Yu L, Lei Y (2018) Quantitative characterization of pore structure of the carboniferous-permian tight sandstone gas reservoirs in eastern Linqing depression by using NMR technique. Pet Res 3(2):110–123. https://doi.org/10.1016/j.ptlrs.2018.06.003
  • 11. Geng Y, Liang W, Liu J, Kang Z, Wu P, Jiang Y (2018) Experimental study on the variation of pore and fracture structure of oil shale under different temperatures and pressures. Chin J Rock Mech Eng 37(11):91–100. https://doi.org/10.13722/j.cnki.jrme.2018.0623 ((In Chinese))
  • 12. Hartlieb P, Toifl M, Kuchar F, Meisels R, Antretter T (2016) Thermo-physical properties of selected hard rocks and their relation to microwave-assisted comminution. Miner Eng 91:34–41. https://doi.org/10.1016/j.mineng.2015.11.008
  • 13. Hodot B (1966) Outburst of coal and coalbed gas (Chinese translation). China Coal Industry Press, Beijing
  • 14. Hou X, Zhu Y, Wang Y, Liu Y (2019) Experimental study of the interplay between pore system and permeability using pore compressibility for high rank coal reservoirs. Fuel 254:115712. https://doi.org/10.1016/j.fuel.2019.115712
  • 15. Hürlimann M, Latour L, Sotak C (1994) Diffusion measurement in sandstone core: nmr determination of surface-to-volume ratio and surface relaxivity. Magn Reson Imaging. https://doi.org/10.1016/0730-725X(94)91548-2
  • 16. Ji Y, Hou J, Zhao E, Lu N, Bai Y, Zhou K, Liu Y (2020) Study on the effects of heterogeneous distribution of methane hydrate on permeability of porous media using low-field NMR technique. Am Geophys Union. https://doi.org/10.1029/2019JB018572
  • 17. Jia H, Zi F, Yang G, Li G, Yang P (2019) Influence of pore water (ice) content on the strength and deformability of frozen argillaceous siltstone. Rock Mech Rock Eng. https://doi.org/10.1007/s00603-019-01943-0
  • 18. Jia H, Ding S, Zi F, Dong Y, Shen Y (2020) Evolution in sandstone pore structures with freeze-thaw cycling and interpretation of damage mechanisms in saturated porous rocks. CATENA 195:104915. https://doi.org/10.1016/j.catena.2020.104915
  • 19. Jin P, Hu Y, Shao J, Liu Z, Feng G, Song S (2019) Influence of temperature on the structure of pore–fracture of sandstone. Rock Mech Rock Eng. https://doi.org/10.1007/s00603-019-01858-w
  • 20. Kamal M, Mahmoud M, Hanfi M, Elkatatny S, Hussein I (2018) Clay minerals damage quantification in sandstone rocks using core flooding and NMR. J Pet Explor Prod Technol. https://doi.org/10.1007/s13202-018-0507-7
  • 21. Kleinberg R (1996) Utility of NMR T2 distributions, connection with capillary pressure, clay effect, and determination of the surface relaxivity parameter ρ2. Magn Reson Imaging 14(7–8):761–767. https://doi.org/10.1016/s0730-725x(96)00161-0
  • 22. Kleinberg R, Horsfield M (1990) Transverse relaxation processes in porous sedimentary rock. J Magn Reson (1969) 88(1):9–19. https://doi.org/10.1016/0022-2364(90)90104-h
  • 23. Kleinberg R, Kenyon W, Mitra P (1994) Mechanism of NMR relaxation of fluids in rock. J Magn Reson Ser A 108(2):206–214. https://doi.org/10.1006/jmra.1994.1112
  • 24. Kogbara R, Iyengar S, Grasley Z, Masad E, Zollinger D (2015) Non-destructive evaluation of concrete mixtures for direct LNG containment. Mater Des 82:260–272. https://doi.org/10.1016/j.matdes.2015.05.084
  • 25. Lai J, Wang G, Wang Z, Chen J, Fan X et al (2017) A review on pore structure characterization in tight sandstones. Earth Sci Rev 177:436–457. https://doi.org/10.1016/j.earscirev.2017.12.003
  • 26. Li M, Mao X, Cao L, Pu H, Mao R, Lu A (2016) Effects of thermal treatment on the dynamic mechanical properties of coal measures sandstone. Rock Mech Rock Eng 49(9):3525–3539. https://doi.org/10.1007/s00603-016-0981-5
  • 27. Liu T, Wang S, Fu R, Zhou M, Li Y, Luo M (2003) Analysis of pore throat structure in rocks by NMR spectroscopy. Petroleum geophysical exploration. https://doi.org/10.13810/j.cnki.issn.1000-7210.2003.03.022(In Chinese)
  • 28. Liu M, Xie R, Guo J, Jin G (2018) Characterization of pore structures of tight sandstone reservoirs by multifractal analysis of the NMR T2 distribution. Energy Fuels 32(12):12218–12230. https://doi.org/10.1021/acs.energyfuels.8b02869
  • 29. Morad S, Al-Ramadan K, Ketzer J, DeRos L (2010) The impact of diagenesis on the heterogeneity of sandstone reservoirs: a review of the role of depositional facies and sequence stratigraphy. AAPG Bull 94(8):1267–1309. https://doi.org/10.1306/04211009178
  • 30. Rao Q, Wang Z, Xie H, Xie Q (2007) Experimental study of mechanical properties of sandstone at high temperature. J Cent South Univ Technol 14(s1):478–483. https://doi.org/10.1007/s11771-007-0311-x
  • 31. Roberts S, Mcdonald P, Pritchard T (1995) A bulk and spatially resolved nmr relaxation study of sandstone rock plugs. J Magn Reson Ser A 116(2):189–195. https://doi.org/10.1006/jmra.1995.0007
  • 32. Sirdesai N, Singh T, Ranjith P (2017a) Thermal alterations in the poro-mechanical characteristic of an Indian sandstone—a comparative study. Eng Geol 226:208–220. https://doi.org/10.1016/j.enggeo.2017.06.010
  • 33. Sirdesai N, Singh T, Ranjith P, Singh R (2017b) Effect of varied durations of thermal treatment on the tensile strength of red sandstone. Rock Mech Rock Eng 50(1):205–213. https://doi.org/10.1007/s00603-016-1047-4
  • 34. Somerton W (1992) Thermal properties and temperature-related behavior of rock/fluid systems. Elsevier, Amsterdam
  • 35. Song Z, Liu G, Yang W, Zou H, Sun M, Wang X (2017) Multi-fractal distribution analysis for pore structure characterization of tight sandstone—a case study of the upper paleozoic tight formations in the Longdong District. Marine Petroleum Geology, Ordos Basin. https://doi.org/10.1016/j.marpetgeo.2017.12.018
  • 36. Taylor T, Giles M, Hathon L, Diggs T, Braunsdorf N, Birbiglia G, Espejo I (2010) Sandstone diagenesis and reservoir quality prediction: models, myths, and reality. AAPG Bull 94(8):1093–1132. https://doi.org/10.1306/04211009123
  • 37. Tydlitát V, Trník A, Scheinherrová L, Podoba R, Černý R (2015) Application of isothermal calorimetry and thermal analysis for the investigation of calcined gypsum–lime–metakaolin–water system. J Therm Anal Calorim 122(1):115–122. https://doi.org/10.1007/s10973-015-4727-5
  • 38. Tziotziou M, Karakosta E, Karatasios I, Diamantopoulos G, Sapalidis A, Fardis M, Maravelaki-Kalaitzaki P, Papavassiliou G, Kilikoglou V (2011) Application of 1h nmr to hydration and porosity studies of lime–pozzolan mixtures. Microporous Mesoporous Mater 139(1–3):16–24. https://doi.org/10.1016/j.micromeso.2010.10.010
  • 39. Volokitin Y, Looyestijn W, Slijkerman W, Hofman J (2001) A practical approach to obtain primary drainage capillary pressure curves from NMR core and log data. Petrophysics SPWLA J Form Eval Reserv Descr 42(4):334–343
  • 40. Watanabe K, Wake T (2009) Measurement of unfrozen water content and relative permittivity of frozen unsaturated soil using NMR and TDR. Cold Reg Sci Technol 59(1):34–41. https://doi.org/10.1016/j.coldregions.2009.05.011
  • 41. Wei D, Liu X, Hu X, Xu R, Zhu L (2015) Estimation of permeability from NMR logs based on formation classification method in tight gas sands. Acta Geophys 63(5):1316–1338. https://doi.org/10.1515/acgeo-2015-0042
  • 42. Wu G, Wang Y, Swift G, Chen J (2013) Laboratory investigation of the effects of temperature on the mechanical properties of sandstone. Geotech Geol Eng 31(2):809–816. https://doi.org/10.1007/s10706-013-9614-x
  • 43. Xiao L, Liu X, Zou C, Hu X, Mao Z, Shi Y, Guo H, Li G (2013) Comparative study of models for predicting permeability from nuclear magnetic resonance (NMR) logs in two Chinese tight sandstone reservoirs. Acta Geophys 62(1):116–141. https://doi.org/10.2478/s11600-013-0165-6
  • 44. Yin T, Li X, Cao W, Xia K (2015) Effects of thermal treatment on tensile strength of laurentian granite using brazilian test. Rock Mech Rock Eng 48(6):2213–2223. https://doi.org/10.1007/s00603-015-0712-3
  • 45. Zhang J, Shen Y, Yang G, Zhang H, Wang Y, Hou X, Sun Q, Li G (2020) Inconsistency of changes in uniaxial compressive strength and P-wave velocity of sandstone after temperature treatments. J Rock Mech Geotech Eng. https://doi.org/10.1016/j.jrmge.2020.05.008
Uwagi
Błędny numer ORCID dla autora Qiang Sun. ORCID przypisany do autora Jianjun Hu.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-85819c55-4b4a-4e12-8452-582af985a8f4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.