PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Chaotic vibrations of the vibro-impact mechanism in a hand-held electro-pneumatic drill

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A qualitative analysis of the model of the impact support mechanism, assuming two models of impact forces and a non-linear characteristic of the air pressure force has been presented in this paper. The ranges of parameters in which the system operates regularly have been estimated. It has also been found that in the case of parameter values outside the designated ranges, the movement may be chaotic. During such movement, undesirable collisions of certain structure elements often occur, which may lead to the destruction of some elements of the system.
Rocznik
Strony
art. no. 2024312
Opis fizyczny
Bibliogr. 32 poz., il. kolor., wykr.
Twórcy
  • Cracow University of Technology, Faculty of Mechanical Engineering, Al. Jana Pawła II 37, 31-864 Cracow, Poland
Bibliografia
  • 1. S.-K. Lai, J. Chui, L. Tong, J.-Q. Sun; A human-based study of hand-arm vibration exposure limits for construction workers; J. Vib. Eng. Technol., 2019, 7 (4), 379-38; DOI: 10.1007/s42417-019-00123-2
  • 2. M. Akinlolu, T.-C. Haupt; Prevalence of the Hand-Arm Vibration Syndrome (HAVS) Among Construction Workers in South Africa; In: Construction Industry Development Board Postgraduate Research Conference; Cham: Springer International Publishing, 2022, 498-507; DOI: 10.1007/978-3-031-22434-8_49
  • 3. M. Liao, J. Ing, M. Sayah, M. Wiercigroch; Dynamic method of stiffness identification in impacting systems for percussive drilling applications; Mech. Syst. Signal Process., 2016, 80, 224-244; DOI: 10.1016/j.ymssp.2016.04.021
  • 4. D. Costa, V. Vaziri, M. Kapitaniak, S. Kovacs, E. Pavlovskaia, M.-A. Savi, M. Wiercigroch; Chaos in impact oscillators not in vain: Dynamics of new mass excited oscillator; Nonlinear Dyn., 2020, 102, 835-861; DOI: 10.1007/s11071-020-05644-0
  • 5. R.-R. Aguiar, H.-I. Weber; Mathematical modeling and experimental investigation of an embedded vibro-impact system; Nonlinear Dyn., 2011, 65, 317-334; DOI: 10.1007/s11071-010-9894-0
  • 6. J. Awrejcewicz, C.-H. Lamarque; Bifurcation and Chaos in Non-Smooth Mechanical Systems; World Scientific Series of Nonlinear Science, Series A, 2003, 45, 978-981-238-459-1; https://hal.archives-ouvertes.fr/hal-00814938
  • 7. B. Błażejczyk-Okolewska; Study of the impact oscillator with elastic coupling of masses; Chaos, Solitons Fract., 2000, 11(15), 2487-2492; DOI: 10.1016/S0960-0779(99)00158-7
  • 8. K. Czołczyński, T. Kapitaniak; Influence of the mass and stiffness ratio on a periodic motion of two impacting oscillators; Chaos, Solitons Fract., 2003, 17, 1-10; DOI: 10.1016/S0960-0779(02)00444-7
  • 9. J. Jerrelind, A. Stensson; Nonlinear dynamics of parts in engineering systems; Chaos, Solitons Fract., 2000, 11, 2413-2428; DOI: 10.1016/S0960-0779(00)00016-3
  • 10. X. Lyu, Q. Gao, G. Luo; Dynamic characteristics of a mechanical impact oscillator with a clearance; Int. J. Mech. Sci., 2020, 178, 105605; DOI: 10.1016/j.ijmecsci.2020.105605
  • 11. L.-Y. Lu, Z.-H. Lu; The periodicity of chaotic impact oscillators in Hausdorff phase spaces; J. Sound Vib., 2000, 235(1), 105-116; DOI: 10.1006/jsvi.2000.2915
  • 12. G.-W. Luo, J.-H. Xie, S.-H.-L. Guo; Periodic motions and global bifurcations of a two-degree-of-freedom system with plastic vibro-impact; J. Sound Vib., 2001, 240(5), 837-858; DOI: 10.1006/jsvi.2000.3259
  • 13. J. Łuczko, P. Cupiał, U. Ferdek; Regular and chaotic vibrations of a vibration-isolated hand grinder; J. Theor. Appl. Mech., 2007, 45(1), 61-72
  • 14. A. Muszyńska, P. Goldman; Chaotic Responses of unbalanced rotor/bearing/ stator systems with looseness or rubs; Chaos, Solitons Fract., 1995, 5 (9), 1683-1704; DOI: 10.1016/0960-0779(94)00171-L
  • 15. F. Peterka, J. Vacík; Transition to Chaotic Motion in Mechanical Systems with Impacts; J. Sound Vib., 1992, 154(1), 95-115; DOI: 10.1016/0022-460X(92)90406-N
  • 16. S.-W. Shaw, P.-J. Holmes; A periodically forced piecewise linear oscillator; J. Sound Vib., 1983, 90(1), 129-155; DOI: 10.1016/0022-460X(83)90407-8
  • 17. S.-W. Shaw, P.-J. Holmes; A periodically forced impact oscillator with large dissipation; J. Appl. Mech., 1983, 50, 894-857; DOI: 10.1115/1.3167156
  • 18. H. Hertz; Ueber die beruehrung fester elastischer koerper; J. Reine Angew. Math., 1881, 91, 156-171; DOI: 10.1515/crll.1882.92.156
  • 19. J. Zhang, W. Li, L. Zhao, G. He; A continuous contact force model for impact analysis in multibody dynamics; Mech. Mach. Theory., 2020, 153, 103946; DOI: 10.1016/j.mechmachtheory.2020.10 3946
  • 20. J. Zhang, X. Liang, Z. Zhang, G. Feng, Q. Zhao, L. Zhao, G. He; A continuous contact force model for impact analysis; Mech. Syst. Signal Process., 2022, 168, 108739; DOI: 10.1016/j.ymssp.2021.1 08739
  • 21. P. Flores, M. Machado, M.T. Silva, et al.; On the continuous contact force models for soft materials in multibody dynamics; Multibody Syst. Dyn., 2011, 25, 357-375; DOI: 10.1007/s11044-010-9237-4
  • 22. H.M. Lankarani, P.E. Nikravesh; Continuous contact force models for impact analysis in multibody systems; Nonlinear Dyn., 1994, 5, 193-207; DOI: 10.1007/BF00045676
  • 23. B. Lundberg, T. Rastemo, J. Huo; Effect of pre-impact waves in an elastic rod on coefficient of restitution; Int. J. Impact Eng., 2021, 151, 103816; DOI: 10.1016/j.ijimpeng.2021.103816
  • 24. C.-H. Lamarque, O. Janin; Modal analysis of mechanical systems with impact non-linearities: limitations to a modal superposition; J. Sound Vib., 2000, 235(4), 567-609; DOI: 10.1006/jsvi.1999.2932
  • 25. K. Witkowski, G. Kudra, J. Awrejcewicz; A new discontinuous impact model with finite collision duration; Mech. Syst. Signal Process., 2022, 166, 108417; DOI: 10.1016/j.ymssp.2021.108417
  • 26. D.-J. Wagg; A note on coefficient of restitution models including the effects of impact induced vibration; J. Sound Vib., 2007, 300(5), 1071-1078; DOI: 10.1016/j.jsv.2006.08.030
  • 27. A. Khandelwal, R. Mukherjee; Spatial Variation of the Coefficient of Restitution for Frictionless Impacts on Circular Beams; J. Appl. Mech., 2024, 91(1), 011011; DOI: 10.1115/1.4063218
  • 28. E.-V. Golycheva, V.-I. Babitsky, A.-M. Veprik; Dynamic correction of excitation in hand-held electro-pneumatic percussion machines; J. Sound Vib., 2003, 259(4), 829 -843; DOI: 10.1006/jsvi.2002.5124
  • 29. J. Auriol, N. Kazemi, S.-I. Niculescu; Sensing and computational frameworks for improving drill-string dynamics estimation; Mech. Syst. Signal Process., 2021, 160, 107836; DOI: 10.1016/j.ymssp.2021.107836
  • 30. E. Pavlovskaia, D.-C. Hendry, M. Wiercigroch; Modelling of high frequency vibro-impact drilling; Int. J. Mech. Sci., 2015, 91, 110-119; DOI: 10.1016/j.ijmecsci.2013.08.009
  • 31. M. Liao, M. Wiercigroch, M. Sayah; J. Ing, Experimental verification of the percussive drilling model; Mech. Syst. Signal Process., 2021, 146, 107067; DOI: 10.1016/j.ymssp.2020.107067
  • 32. Z.-S. Ji, J.-B. Jiang, H.-Z. Shi, B.-M. Li; Experimental studies on rock failure mechanisms under impact load by single polycrystalline diamond compact cutter; Pet. Sci., 2023, 20(5), 3100-3109; DOI: 10.1016/j.petsci.2023.04.008
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-857ca4ee-7c8c-456d-8087-fce9be02278c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.