PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical analysis of cavitation phenomena with variable speed centrifugal pump

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Cavitation is an abnormal physical phenomenon which can be generated in relatively low pressure regions in centrifugal pumps. In predicting and understanding cavitation in the pumps, it is important to secure their efficiency and reliability. The purpose of this study is to analyze the cavitation flows in centrifugal pumps with variable speeds through numerical methods. The Rayleigh–Plesset cavitation model was adapted as the source term for inter-phase mass transfer in order to predict and understand the cavitation performances. The Reynolds-average Navier-Stokes (RANS) equations were discretized by the finite volume method. The two-equation SST turbulence model was accounted for turbulent flows. The numerical analysis results were validated with experimental data and it was found that both results were in good accordance. The cavitation performances were obtained for variable speeds with different temperatures and the effects on cavitation were described according to different cavitation numbers. Cavitation performances were also observed for different centrifugal pump stages (1st and 2nd). The performances of cavitation decreased with the increase of rotational speed. In addition, the development of cavitation is elucidated according to the different temperatures, and the effects of water vapor volume fraction are discussed.
Rocznik
Strony
306--311
Opis fizyczny
Bibliogr. 16 poz., rys., tab., wykr.
Twórcy
  • Graduate School, Dept.of Mechanical Engineering, Soongsil University, Seoul, 06978, South Korea
autor
  • Graduate School, Dept.of Mechanical Engineering, Soongsil University, Seoul, 06978, South Korea
autor
  • Department of Mechanical Engineering, Soongsil University, Seoul, 06978, South Korea
Bibliografia
  • [1] B. Schiavello, F. C. Visser, Pump cavitation-various npshr criteria, npsha margins, and impeller life expectancy, in: Proceedings of the 25th International Pump Users Symposium, Turbomachinery Laboratory, Texas A&M University, College Station, TX, 2009, pp. 113–144.
  • [2] Japan Association of Agriculture Engineering Enterprises, Pumping Station Engineering Hand Book, Tokyo, (1991), pp. 50-90.
  • [3] C. E. Brennen, Hydrodynamics of pump, Oxford University Press, 1994.
  • [4] B. R. Shin, et, al., Application of preconditioning method to gas-liquid two-phase flow computations, Journal of Fluids Engineering, ASME 126 (2004) 605–612.
  • [5] Hord J., Cavitation in liquid cryogens, Vol. I II III & IV NASA CR- 2054/2156/2242/2448 (1972a, 1972b, 1973, 1974).
  • [6] G. Kovich, Comparison of predicted and experimental cavitation performance of 84 helical inducer in water and hydrogen, Vol. 7016, National Aeronautics and Space Administration, 1970.
  • [7] H. A. Stahl, A. J. Stepanoff, N. Phillipsburg, Thermodynamic aspects of cavitation in centrifugal pumps, ASME J. Basic Eng 78 (1956) 1691–1693.
  • [8] Moore R.D. & Ruggeri R.S., Prediction of thermodynamic effects of developed cavitation based on liquid hydrogen and freon-114 data in scaled venturis, NASA TN D-4899, 1968.
  • [9] H. Kato, H. Yamaguchi, S. Okada, K. Kikuchi, M. Myanaga, Thermodynamic effect on incipient and developed sheet cavitation, in: International Symposium on Cavitation Inception, 1984, pp. 127–136.
  • [10] R. S. Ruggeri, R. D. Moore, Method for prediction of pump cavitation performance for various liquids, liquid temperatures, and rotative speeds, National Aeronautics and Space Administration, 1969.
  • [11] J.-P. Franc, E. Janson, P. Morel, C. Rebattet, M. Riondet, Visualizations of leading edge cavitation in an inducer at different temperatures, 4th International Symposium on Cavitation, CAV2001, Pasadena, CA, June 20–23, 2001.
  • [12] A. Cervone, R. Testa, C. Bramanti, E. Rapposelli, L. D’Agostino, Thermal effects on cavitation instabilities in helical inducers, Journal of propulsion and power 21 (5) (2005) 893–899.
  • [13] L. Torre, A. Cervone, A. Pasini, L. d’Agostino, Experimental characterization of thermal cavitation effects on space rocket axial inducers, Journal of Fluids Engineering 133 (11) (2011) 111303.
  • [14] F. Bakir, R. Rey, A. Gerber, T. Belamri, B. Hutchinson, Numerical and experimental investigations of the cavitating behavior of an inducer, International Journal of Rotating Machinery 10 (1) (2004) 15–25.
  • [15] N. J. Georgiadis, D. A. Yoder, W. B. Engblom, Evaluation of modified two-equation turbulence models for jet flow predictions, AIAA journal 44 (12) (2006) 3107–3114.
  • [16] Ansys Inc. 2013, ANSYS-CFX (CFX Introduction, CFX Reference guide, CFX Tutorials, CFX-Pre User’s Guide, CFX-Solver Manager User’s Guide, Theory Guide), release 14.5, USA.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-857bbea6-e6d4-4571-97c0-659c5c9a2358
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.