PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Comparative thermo-hydraulic analysis of periodic stepped open micro pin-fin heat sink

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
There is no doubt that the miniaturization of various electronic devices, including processors, servers, micro-electromechanical system devices, etc. has resulted in increased overall performance. However, there is a major problem with thermal management in these devices, as well as in many others. One of the most promising solutions is liquid cooled microchannel heat sink. In the current work, different cases of open micro pin-fin configurations of heat sink were considered. The configurations considered were a uniform height micro pin-fin heat sink, three-stepped unidirectional micro pin-fin heat sink and three-stepped bi-directional micro pin-fin heat sink. These configurations were also oriented in two dissimilar fashions, i.e. inline and staggered, so the total of six heat sink configurations are compared and analysed. Using single phase water as a coolant and copper as a substrate, these configurations were simulated numerically for different Reynolds numbers (10−160) under heat flux of 500 kW/m2 . It can be concluded that at low Reynolds numbers, steepness does not contribute much in both inline and staggered arrangements, while at higher Reynolds numbers, 3 stepped staggered configurations has revealed the best performance due to boosted fluid mixing and more projecting secondary flow. Furthermore, bi-directionality in steepness shows augmented performance only in inline arrangement.
Rocznik
Strony
99--105
Opis fizyczny
Bibliogr. 33 poz., rys.
Twórcy
  • Department of Mechanical Engineering, School of Engineering and Technology, K. R. Mangalam University, Gurugram-122103, Haryana, India
autor
  • Department of Electrical and Electronics Engineering, School of Engineering and Technology, K. R. Mangalam University, Gurugram-122103, Haryana, India
  • Department of Physics, School of Basic and Applied Sciences, K. R. Mangalam University, Gurugram-122103, Haryana, India
  • Department of Mechanical Engineering, Graphic Era Deemed to Be University, Dehradun-248002, Uttarakhand, India
  • Department of Mechanical Engineering, BIT Sindri, Dhanbad-828123, Jharkhand, India
  • Department of Mechanical Engineering, Graphic Era Hill University, Dehradun-248002, Uttarakhand, India
Bibliografia
  • [1] Lee, J., & Mudawar, I. (2009). Low-temperature two-phase micro-channel cooling for high-heat-flux thermal management of defense electronics. IEEE Transactions on Components Packaging and Manufacturing Technology, 32(2), 453–465. doi:10.1109/ITHERM.2008.4544263
  • [2] Ahmed, H.E., Salman, B.H., Kherbeet, A.S., & Ahmed, M.I. (2018). Optimization of thermal design of heat sinks: A review. International Journal of Heat and Mass Transfer, 118, 129–153. doi: 1016/j.ijheatmasstransfer.2017.10.099
  • [3] Kandlikar, S.G., & Bapat, A.V. (2007). Evaluation of jet impingement, spray and microchannel chip cooling options for high heat flux removal. Heat Transfer Engineering, 28(11), 911–923. doi: 10.1080/01457630701421703
  • [4] Gururatana, S. (2012). Heat transfer augmentation for electronic cooling. American Journal of Applied Sciences, 9(3), 436–439. doi: 10.3844/ajassp.2012.436.439
  • [5] Tuckerman, D.B., & Pease, R.F.W. (1981). High-performance heat sinking for VLSI. IEEE Electron Device Letters, 2(5), 126–129. doi: 10.1109/EDL.1981.25367
  • [6] Bhandari, P., & Prajapati, Y.K. (2021). Thermal performance of open microchannel heat sink with variable pin fin height. International Journal of Thermal Sciences, 159, 106609. doi:10.1016/j.ijthermalsci.2020.106609
  • [7] Bhandari, P., Singh, J., Kumar, K., & Ranakoti, L. (2022). A review on active techniques in microchannel heat sink for miniaturization problem in electronic industry. Acta Innovations, 45, 45-54. doi: 10.32933/ActaInnovations.45.4
  • [8] Kumar, N., Singh, P., Redhewal, A.K., & Bhandari, P. (2015). A review on nanofluids applications for heat transfer in microchannels. Procedia Engineering, 127, 1197–1202. doi: 10.1016/ j.proeng.2015.11.461
  • [9] Rajabifar, B. (2015). Enhancement of the performance of a double-layered microchannel heat sink using PCM slurry and nanofluid coolants. International Journal of Heat and Mass Transfer, 88, 627–635. doi: 10.1016/j.ijheatmasstransfer.2015.05.007
  • [10] Bhandari, P., & Prajapati, Y.K. (2017). Flow boiling instabilities in microchannels and their promising solutions – A review. Experimental Thermal and Fluid Science, 88, 576-593. doi:10.1016/j.expthermflusci.2017.04.014
  • [11] Bhandari, P., & Prajapati, Y.K. (2022). Influences of tip clearance on flow and heat transfer characteristics of open-type micro pin fin heat sink. International Journal of Thermal Sciences, 179,107714. doi: 10.1016/j.ijthermalsci.2021.107714
  • [12] Bhandari, P., & Prajapati, Y.K. (2021). Fluid flow and heat transfer behavior in distinct array of stepped micro pin fin heat sink. Journal of Enhanced Heat Transfer, 28(4), 31–61. doi:10.1615/JEnhHeatTransf.2021037008
  • [13] Bhandari, P., & Prajapati, Y.K. (2020). Numerical analysis of different arrangement of square pin-fin microchannel heat sink. In B. Biswal, B. Sarkar, & P. Mahanta (Eds.), Advances in Mechanical Engineering, Lecture Notes in Mechanical Engineering (pp. 879–891). Singapore: Springer. doi: 10.1007/978-981-15-0124-1_79
  • [14] Bhandari, P. (2022). Numerical investigations on the effect of multi-dimensional steepness in open micro pin fin heat sink using single-phase liquid fluid flow. International Communications in Heat and Mass Transfer, 138, 106392. doi: 10.1016/j.icheatmasstransfer.2022.106392
  • [15] Wirtz, R., & Colban, D.M. (1996). Comparison of the cooling performance of staggered and in-line arrays of electronic packages. Journal of Electronic Packaging, Transactions of the ASME,118, 27–30. doi: 10.1115/1.2792123
  • [16] Keshavarz, A., Lavasani, M., & Bayat, H. (2019). Numerical analysis of effect of nanofluid and fin distribution density on thermal and hydraulic performance of a heat sink with drop-shaped micro pin fins. Journal of Thermal Analysis and Calorimetry, 135(2), 1211–1228. doi: 10.1007/s10973-018-7711-z
  • [17] Bhandari, P., Padalia, D., Ranakoti, L., Khargotra, R., András, K., & Singh, T. (Year). Thermo-hydraulic investigation of open micro prism pin fin heat sink having varying prism sides. Alexandria Engineering Journal, 69, 457-468. doi: 10.1016/j.aej.2023.02.016
  • [18] Bhandari, P., Rawat, K.S., Prajapati, Y.K., Padalia, D., Ranakoti, L., Singh, T., & Joshi, K. (2023). Design modifications in micro pin fin configuration of microchannel heat sink for single-phase liquid flow: A review. Journal of Energy Storage, 66, 107548.doi: 10.1016/j.est.2023.107548
  • [19] Kumari, N., Alam, T., Ali, M.A., Yadav, A.S., Gupta, N.K., Siddiqui, M.I.H., Dobrota, D., & Rotaru, I.M. (2022). Numerical investigation on hydrothermal performance of microchannel heat sink with periodic spatial modification on sidewalls. Micromachines, 13, 1986. doi: 10.3390/mi13111986
  • [20] Saha, S., Alam, T., Siddiqui, M.I.H., Kumar, M., Ali, M.A., Gupta, N.K., & Dobrota, D. (2022). Analysis of microchannel heat sink of silicon material with right triangular groove on sidewall of passage. Materials, 15, 7020. doi: 10.3390/ma15197020
  • [21] Vatsa, A., Alam, T., Siddiqui, M.I.H., Ali, M.A., & Dobrotă, D. (2022). Performance of microchannel heat sink made of silicon material with the two-sided wedge. Materials, 15(14), 4740. doi: 10.3390/ma15144740
  • [22] Bhandari, P., Rawat, K.S., Prajapati, Y.K., Padalia, D., Ranakoti, L., & Singh, T. (2023). A review on design alteration in microchannel heat sink for augmented thermohydraulic performance. Ain Shams Engineering Journal, 15(2), 102417. doi: 10.1016/j.asej.2023.102417
  • [23] Dash, A.P., Prada, T., Alam, T., Siddiqui, M.I.H., Blecich, P., Kumar, M., Gupta, N.K., Ali, M.A., & Yadav, A.S. (2022). Impact on heat transfer rate due to an extended surface on the passage of microchannel using cylindrical ribs with varying sector angle. Energies, 15(21), 8191. doi: 10.3390/en15218191
  • [24] Bhandari, P., Prajapati, Y.K., & Uniyal, A. (2022). Influence of three-dimensionality effects on thermal hydraulic performance for stepped micro pin fin heat sink. Meccanica, 58, 2113-2129. doi: 10.1007/s11012-022-01534-4
  • [25] Bhandari, P., Kumar, K., Ranakoti, L., Bisht, V.S., Lila, M.K., Joshi, K., Raju, N.V.G., Sobti, R., & Jayahari, L. (2023). Thermohydraulic investigation of two stepped micro pin fin heat sink having variable step size. E3S Web of Conferences, 430, 01177. doi: 10.1051/e3sconf/202343001177
  • [26] Bhandari, P., Prajapati, Y.K., & Bisht, V.S. (2021). Heat transfer augmentation in micro pin fin heat sink using out of plane fluid mixing. In Proceedings of the 26th National and 4th International ISHMT-ASTFE Heat and Mass Transfer Conference, IIT Madras (pp. 1595–1600). Begel House Inc. doi: 10.1615/IHMTC-2021.2400
  • [27] Bhandari, P., & Prajapati, Y.K. (2021). Experimental investigation of variable tip clearance in square pin fin microchannel heat sink. In Proceedings of the 26th National and 4th International ISHMT-ASTFE Heat and Mass Transfer Conference, IIT Madras (pp. 1351–1356). Begel House Inc. doi: 10.1615/IHMTC2021.2040
  • [28] Bhandari, P., & Prajapati, Y.K. (2021). Numerical study of fluid flow and heat transfer in stepped micro-pin–fin heat sink. In T. Prabu, P. Viswanathan, A. Agrawal, & J. Banerjee (Eds.), FluidMechanics and Fluid Power, Lecture Notes in Mechanical Engineering (pp. 373–381). Springer. doi: 10.1007/978-981-16-0698-4_40
  • [29] Ali, H.M., & Arshad, W. (2015). Thermal performance investigation of staggered and inline pin in heat sinks using water-based rutile and anatase TiO2 nanofluids. Energy Conversion and Management, 106, 793–803. doi: 10.1016/j.enconman.2015.10.015
  • [30] Ambreen, T., & Kim, M. (2018). Effect of fin shape on the thermal performance of nanofluid-cooled micro pin-fin heat sinks. International Journal of Heat and Mass Transfer, 126, 245–256. doi: 10.1016/j.ijheatmasstransfer.2018.05.164
  • [31] Ghildyal, A., Bisht, V.S., Rawat, K.S., & Bhandari, P. (2023). Effect of D-shaped, reverse D-shaped and U-shaped turbulators in solar air heater on thermohydraulic performance. Archives of Thermodynamics, 44(2), 3-20. doi: 10.24425/ather.2023.146556
  • [32] Thapa, R.K., Bisht, V.S., Rawat, K., & Bhandari, P. (2023). Computational analysis of automobile radiator roughened with rib roughness. Journal of Heat and Mass Transfer Research, 9, 209-218. doi: 10.22075/jhmtr.2023.27617.1382
  • [33] Karmveer, Gupta, N.K., Alam, T., & Singh, H. (2022). An experimental study of thermohydraulic performance of solar air heater having multiple open trapezoidal rib roughnesses. Heat Transfer, 1–21. doi: 10.1080/08916152.2022.2139024
Uwagi
[1] This work was supported by the K. R. Mangalam University, Gurugram, Haryana (India) through a Seed Research Grant (KRMU/ADMIN/SEED/2022-23/3493(B).
[2] Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-857ad3d9-1462-443a-af5d-77b3ac579c0f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.