PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Abatement of particulate matter and SO2 emission by ships

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Ship engines emit noxious gases (SO2, NOx, and VOC) and particulate matter (PM), mostly black carbon. Since 1990, the International Maritime Organization (IMO) regulations gradually restricted the level of emission of NOx, which since 2016 have to be lower than 2-3.4 g/kWh, depending on engine power. SO2 emission reduction has begun since 2010 and now the content of sulphur in marine fuels is limited to 3.5%. At the same time, the Sulphur Emission Control Areas (SECA) has been established, at which the sulphur content in fuel cannot be higher than 0.1%. Since 2020, only a fuel of 0.5% sulphur can be used at all cruising areas outside SECA. It should be noted that due to lack of efficient technology, IMO still has not issued regulations regarding the PM emission by ships. The paper discusses various electrostatic techniques used for the reduction of PM emission in Diesel engine exhausts. Electrostatic scrubber systems, using seawater, allow removal of PM from exhausts with high efficiency and simultaneously SO2 gas. Electrostatic agglomerators allow increasing submicron and nanoparticles by coagulation of those particles to the larger ones, which could be removed by conventional techniques.
Twórcy
autor
  • Institute of Fluid Flow Machinery, Polish Academy of Sciences Fiszera Street 14, 80-231 Gdansk, Poland tel.: +48 58 3411246, fax: +48 58 3416144
autor
  • Institute of Fluid Flow Machinery, Polish Academy of Sciences Fiszera Street 14, 80-231 Gdansk, Poland tel.: +48 58 3411246, fax: +48 58 3416144
  • Institute of Fluid Flow Machinery, Polish Academy of Sciences Fiszera Street 14, 80-231 Gdansk, Poland tel.: +48 58 3411246, fax: +48 58 3416144
autor
  • Institute of Fluid Flow Machinery, Polish Academy of Sciences Fiszera Street 14, 80-231 Gdansk, Poland tel.: +48 58 3411246, fax: +48 58 3416144
autor
  • Institute of Fluid Flow Machinery, Polish Academy of Sciences Fiszera Street 14, 80-231 Gdansk, Poland tel.: +48 58 3411246, fax: +48 58 3416144
autor
  • RAFAKO S.A., Electrostatic Precipitators Division, Górnośląska Street 3A, 43-200 Pszczyna, Poland tel.: +48 32 3263026, fax: +48 32 4153427
  • RAFAKO S.A., Electrostatic Precipitators Division, Górnośląska Street 3A, 43-200 Pszczyna, Poland tel.: +48 32 3263026, fax: +48 32 4153427
autor
  • RAFAKO S.A., Electrostatic Precipitators Division, Górnośląska Street 3A, 43-200 Pszczyna, Poland tel.: +48 32 3263026, fax: +48 32 4153427
autor
  • RAFAKO S.A., Electrostatic Precipitators Division, Górnośląska Street 3A, 43-200 Pszczyna, Poland tel.: +48 32 3263026, fax: +48 32 4153427
autor
  • RAFAKO S.A., Electrostatic Precipitators Division, Górnośląska Street 3A, 43-200 Pszczyna, Poland tel.: +48 32 3263026, fax: +48 32 4153427
  • Gdynia Maritime University, Faculty of Marine Engineering Morska Street 81-87, 81-225 Gdynia, Poland tel.: +48 58 6901347, fax: +48 58 6901399
Bibliografia
  • [1] Abbod, M., Beleca, R., Peirce, D., Ganippa, L., Manivannan, N., Balachandran, W., Power controlled microwave reactor for the removal of NOx and SOx from the exhaust of marine Diesel engine, Transport Research Arena, Paper No. 19706, 14-17 April 2014, Paris, France 2014.
  • [2] Adamiak, K., Jaworek A., Krupa A., Deposition efficiency of dust particles on a single, falling and charged water droplet, IEEE Trans. Ind. Appl., Vol. 37, No. 3, pp. 734-750, 2001.
  • [3] Bai, M., Wang, S., Chen, Z., Leng, H., Mao, S., The effects of submicrometer dust charging and coagulation on esp efficiency by using alternating electric field, IEEE Trans. Plasma Sci.,Vol. 38, No. 2, pp. 127-132, 2010.
  • [4] Balachandran, W., Krupa, A., Machowski, W., Jaworek, A., Smoke precipitation by charged water aerosols, J. Electrostatics, Vol. 51-52, pp. 193-199, 2001.
  • [5] Chen, H., Luo, Z., Jiang, J., Zhou, D., Lu, M., Fang, M., Cen, K., Effects of simultaneous acoustic and electric fields on removal of fine particles emitted from coal combustion, Powder Technology, Vol. 281, pp. 12-19, 2015.
  • [6] Di Natale, F., Carotenuto, C., D’Addio, L., Lancia, A., Antes, T., Szudyga, M., Jaworek, A., Gregory, D., Jackson, M., Volpe, P., Beleca, R., Manivannan, N., Abbod, M., Balachandran, W., New technologies for marine Diesel engine emission control, Chem. Eng. Trans., Vol. 32, pp. 361-366, 2013.
  • [7] Di Natale, F., Carotenuto, C., D’Addio, L., Jaworek, A., Krupa, A., Szudyga, M., Lancia, A., Capture of fine and ultrafine particles in a wet electrostatic scrubber, J. Environmental Chemical Engineering, Vol. 3, pp. 349-356, 2015.
  • [8] Eide, M.S., Dalsoren, S.B., Endresen, O., Samset, B., Myhre, G., Fuglesvedt, J., Bernsten, T., Reducing CO2 from shipping – do non-CO2 effects matter? Atmos. Chem. Phys., Vol. 13, pp. 4183-4201, 2013.
  • [9] Eyring, V., Stevenson, D.S., Lauer, A., Dentener, F.J., Butler, T., Collins, W.J., Ellingsen, K., Gauss, M., Hauglustaine, D.A., Isaksen, I.S.A., Lawrence, M.G., Richter, A., Rodriguez, J.M., Sanderson, M., Strahan, S.E., Sudo, K., Szopa, S., Noije, T.P.C.v., Wild, O., Multi-model simulations of the impact of international shipping on Atmospheric Chemistry and Climate in 2000 and 2030, Atmospheric Chemistry and Physics, Vol. 7, pp. 757-780, 2007.
  • [10] Ha, T.H., Nishida, O., Fujita, H., Wataru, H., Enhancement of diesel particulate matter collection in an electrostatic water-spraying scrubber, J. Mar. Sci. Technol., Vol. 15, pp. 271-279, 2010.
  • [11] Hautanen, J., Kilpeläinen, M., Kauppinen, E.I., Jokiniemi, J., Lehtinen, K., Electrical agglomeration of aerosol particles in an alternating electric field, Aerosol Sci. Techn., Vol. 22, pp. 181-189, 1995.
  • [12] Jaworek, A., Marchewicz, A., Krupa, A., Sobczyk, A.T., Czech, T., Antes, T, Śliwiński, Ł., Kurz, M., Szudyga, M., Rożnowski, W., Dust particles precipitation in AC/DC electrostatic precipitator, Journal of Physics: Conference Series, 646, Paper No. 012031, 2015.
  • [13] Jaworek, A., Szudyga, M., Krupa, A., Czech, T., Sobczyk, A.T., Marchewicz, A., Antes, T., Balachandran, W., Beleca, R., Di Natale, F., Lancia, A., Carotenuto, C., D’Addio, L., Gregory, D., Jackson, M., Kozak, S., Volpe, L., Charchalis, A., Technical issues of PM removal from ship Diesel engines, Transport Research Arena, Paper No. 20068, 14-17 April 2014, Paris, France 2014.
  • [14] Ji, J.H., Hwang, J., Bae, G.N., Kim, Y.G., Particle charging and agglomeration in DC and AC electric fields, J. Electrostatics, Vol. 61, pp. 57-68, 2004.
  • [15] Johansson, L., Jalkanen, J.-P. Kalli, J., Kukkonen, J., The evolution of shipping emissions and the costs of regulation changes in the northern EU area, Atmos. Chem. Phys., Vol. 13, pp. 11375-11389, 2013.
  • [16] Kalt, P., Nathan, G., Kelso, R., Truce, R., Wilkins, J., Assessing the significance of the indigo aerodynamic agglomeration technology using mie/lif laser diagnostics, 10th Int. Conf. Electrostatic Precipitators, Australia, Paper No. 9B1, 2006.
  • [17] Kanazawa, S., Ohkubo, T., Nomoto, Y., Adachi, T., Submicron particle agglomeration and precipitation by using a bipolar charging method, J. Electrostatics, Vol. 29, No. 3, pp. 193-209, 1993.
  • [18] Kärcher, B., Peter, Th., Ottmann, R., Contrail formation: Homogeneous nucleation of H2SO4/ H2O droplets, Goephys. Res. Lett., Vol. 22, No. 12, pp. 1501-1504, 1995.
  • [19] Kildeso, J., Bhatia, V.K., Lind, L., Johnson, E., Johansen, A., An experimental investigation for agglomeration of aerosols in alternating electric fields, Aerosol Sci. Technol., Vol. 23, pp. 603-610, 1995.
  • [20] Kittelson, D.B., Engines and nanoparticles: A review, J. Aerosol Sci., Vol. 29, No. 5/6, pp. 575-588, 1998.
  • [21] Koizumi, Y., Kawamura, M., Tachikubo, F., Watanabe, T., Estimation of the agglomeration coefficient of bipolar-charged aerosol particles, J. Electrostatics, Vol. 48, No. 2, pp. 93-101, 2000.
  • [22] Koizumi, Y., Tachikubo, F., Watanabe, T., Hautanen, J., Bipolar-charged submicron particle agglomeration, J. Electrostatics, Vol. 35, pp. 55-60, 1995.
  • [23] Krupa, A., Jaworek, A., Marchewicz, A., Sobczyk, A.T., Czech, T., Antes, T., Śliwiński, Ł., Ottawa, A., Szudyga, M., Submicron particles emission control by electrostatic agglomeration, XIV Int. Conf. Electrostatic Precipitators, 19-23 Sept. 2016, Wrocaw 2016.
  • [24] Krupa, A., Jaworek, A., Sobczyk, A.T., Marchewicz, A., Szudyga, M., Antes, T., Charged spray generation for gas cleaning applications, Journal of Electrostatics, Vol. 71, pp. 260-264, 2013.
  • [25] Kullas-Nyman, B.M., Scrubbers for the Baltic Sea area. Ships Fuel and Technology – “Toolbox Seminar”, Helsinki, 18th Nov. 2011 (http://www.trafi.fi/filebank/a/1322419984/ 2882cf768666e2053c4571dcb5efc9c6/1679-Kullas-nyman.pdf)
  • [26] Lack, D.A., Corbett, J.J., Black carbon from ships: a review of the effects of ship speed, fuel quality and exhaust gas scrubbing, Atmos. Chem. Phys., Vol. 12, pp. 3985-4000, 2012.
  • [27] Laitinen, A., Hautanen, J., Keskinen, J., Kauppinen, E., Jokiniemi, J., Lehtinen, K., Bipolar charged aerosol agglomeration with alternating electric field in laminar gas flow, J. Electrostatics, Vol. 38, pp. 303-315, 1996.
  • [28] Ma, H., Steernberg, K., Riera-Palou, X., Tait, N., Well-to-wake energy and greenhouse gas analysis of SOX abatement options for the marine industry, Transport. Res., Part D 17, pp. 301-308, 2012.
  • [29] Mizuno, A., Recent progress in electrostatic precipitation, Transactions of the Institute of Fluid-Flow Machinery, No. 119, pp. 79-88, 2007.
  • [30] Neeft, J.P.A., Makkee, M., Moulijn, J.A., Diesel particulate emission control, Fuel Processing Technology, Vol. 47, 1-69, 1996.
  • [31] Petzold, A., Schröder, F.P., Jet engine exhaust aerosol characterization, Aerosol Science and Technology, Vol. 28, pp. 62-76, 1998.
  • [32] Reynolds, K.J., Exhaust gas cleaning systems selection guide. Ship Operations Cooperative Program, The Glosten Associates, USA, File No. 10047.01, 22 February 2011.
  • [33] Tan, B., Wang, L., Zhang, X., The effect of an external DC electric field on bipolar charged aerosol agglomeration, J. Electrostatics, Vol. 65, pp. 82-86, 2007.
  • [34] Truce, R.J., Wilkinson, J.W., Enhanced fine particle and mercury emission control using the Indigo agglomerator, 11 Int. Conf. Electrostatic Precipitation, pp. 206-214, 20-24 Oct. 2008, Hangzhou, China 2008.
  • [35] Zhou, D., Luo, Z., Jiang, J., Chen, H., Lu, M., Fang, M., Experimental study on improving the efficiency of dust removers by using acoustic agglomeration as pretreatment, Powder Technology, Vol. 289, pp. 52-59, 2016.
  • [36] Zhu, J., Zhang, X., Chen, W., Shi, Y., Yan, K., Electrostatic precipitation of fine particles with a bipolar pre-charger, J. Electrostatics, Vol. 68, pp. 174-178, 2010.
  • [37] Zukeran, A., Ikeda, Y., Ehara, Y., Ito, T., Takahashi, T., Kawakami, H., Takamatsu, T., Agglomeration of particles by ac corona discharge, Electr. Eng. Japan, Vol. 130, No. 1, pp. 30-37, 2000.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8579fd27-4ff7-43e2-a5b4-f9c173afc3f3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.