PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analiza i ocena awaryjności w wybranym systemie wodociągowym

Identyfikatory
Warianty tytułu
EN
Analysis and assessment of failure in chosen water supply system
Języki publikacji
PL
Abstrakty
PL
W pracy przedstawiono analizę związaną z awaryjnością sieci wodociągowej. Określono wskaźnik intensywności uszkodzeń dla poszczególnych rodzajów przewodów magistralnych, rozdzielczych oraz przyłączy wodociągowych. Przedstawiono również charakterystykę sieci wodociągowej, jej strukturę wiekową oraz materiałową. Przeprowadzono analizę przyczyn występowania awarii oraz czasu odnowy. Zauważono, że prowadzone przedsięwzięcia inwestycyjno-modernizacyjne sieci wodociągowej w rozpatrywanym systemie wodociągowym wpłynęły na zmniejszenie się intensywności uszkodzeń. Ogólna długość sieci wodociągowej wynosiła 142,3 km, w tym 75,2 km przypadało na przewody rozdzielcze, 52,1 km stanowi długość przyłączy wodociągowych oraz 15 km to przewody magistralne. Najwięcej awarii w sieci wodociągowej odnotowano w miesiącu grudniu (161 awarii), natomiast miesiącem, w którym występowało najmniej uszkodzeń był miesiąc czerwiec (57 awarii). Głównymi przyczynami występowania awarii w mieście były korozja przewodów (40,2%) oraz pęknięcia wodociągu (29,22%). Znaczny udział miała również nieszczelność złączy, która stanowiła 18% ogółu uszkodzeń. Średnia jednostkowa intensywność uszkodzeń w analizowanym okresie wynosiła dla przewodów rozdzielczych 0,92 uszk·km-1·rok-1, dla przewodów magistralnych 0,55 uszk·km-1·rok-1, z kolei dla przyłączy wodociągowych 1,00 uszk·km-1·rok-1. Najwięcej awarii usuwano w przeciągu 5-7 godzin od ich zgłoszenia.
EN
The paper presents analysis of failure rate associated with the water supply network. Failure rate indicator was determined for mains, distributional and water supply connections. It also presents the characteristics of the water supply system, its age structure, material and the length of each water pipes. An analysis of water supply failure depending on the cause and the renewal time was presented. Investment and modernization of water supply network in the water supply system contributed to a decrease in the failure rate, which in the last year of the study does not exceed the criterion level. The total length of water supply network was 142.3 km, including 75.2 km for distributional, 52.1 kilometers is the length of water supply connections and 15 km is for the main. Most failures in the water supply network was recorded in the month of December (161 failure), while the month in which occurred the least failure was the month of June (57 failures). The main causes of the occurrence of a failure in the city were pipes corrosion of about 40.2% and 29,22% for water pipe rupture. For months, which was dominated by corrosion damage were the months of autumn and winter, as November and December. Significant involvement of leaking joints, which accounted for 18% of total damage. The average unit rate of failures in the reporting period amounted 0,92 uszk·km-1·rok-1, for mains 0,55 uszk·km-1·rok-1, while for water supply connections 1,00 uszk·km-1·rok-1. Most failures were removed within 5-7 hours after its submission.
Twórcy
  • Politechnika Rzeszowska
  • Politechnika Rzeszowska
Bibliografia
  • [1] Hotloś H.: Ilościowa ocena wpływu wybranych czynników na parametry i koszty eksploatacji sieci wodociągowych. Politechnika Wrocławska, Wrocław 2007.
  • [2] Iwanejko R., Leń T.: Analiza uszkadzalności sieci wodociągowej eksploatowanej przez SPGK w Sanoku, Czasopismo Inżynierii Lądowej, Środowiska i Architektury, JCEEA, t. XXXII, z. 62 (1/15), s. 153-166.
  • [3] Iwanek M., Kowalska B., Kowalski D., Kwietniewski M., Miszta-Kruk K., Mikołajuk P.: Wpływ różnych czynników na awaryjność sieci wodociągowej w układzie przestrzennym – studium przypadku, Czasopismo Inżynierii Lądowej, Środowiska i Architektury, JCEEA, t. XXXII, z. 62 (1/15), s. 167-183.
  • [4] Kwietniewski M., Rak J.: Niezawodność infrastruktury wodociągowej i kanalizacyjnej w Polsce. Studia z Zakresu Inżynierii, nr 67. Polska Akademia Nauk, Warszawa 2010.
  • [5] Kwietniewski M., Roman M., Kłoss-Trębaczkiewicz H.: Niezawodność wodociągów i kanalizacji. Arkady, Warszawa 1993.
  • [6] Mays W. L.: Reliability analysis of water distribution systems. American Society of Civil Engineers, New York 1989.
  • [7] Pietrucha-Urbanik K.: Prioritizing water pipe renewal using fuzzy set theoryJournal of KONBiN 1(33)2015, p. 243-250. DOI 10.1515/jok-2015-032.
  • [8] Rak J.: Podstawy bezpieczeństwa systemów zaopatrzenia w wodę. Monografie Komitetu Inżynierii Środowiska Polskiej Akademii Nauk, vol. 28. Wydawn. Drukarnia Liber Duo Kolor, Lublin 2005.
  • [9] Studziński A., Pietrucha-Urbanik K., Mędrala A.: Analiza strat wody oraz awaryjności w wybranych systemach zaopatrzenia w wodę, Czasopismo Inżynierii Lądowej, Środowiska i Architektury, JCEEA, t. XXXI, z. 61 (4/14), 2014, s. 193-201. DOI:10.7862/rb.2014.144.
  • [10] Tchórzewska-Cieślak B., Rak. R. J.: Propozycja nowej systematyki własności funkcjonowania systemu na przykładzie systemu zaopatrzenia w wodę. Gaz, Woda i Technika Sanitarna, vol. 5, 2008, s. 20-22.
  • [11] Wieczysty A.: Metody oceny i podnoszenia niezawodności działania komunalnych systemów zaopatrzenia w wodę. Wydawnictwo Komitetu Inżynierii Środowiska PAN, Kraków 2001.
  • [12] Wieczysty A., Niezawodność systemów wodociągowych i kanalizacyjnych, Politechniki Krakowskiej, Tom 1, cz. 1 i 2, Kraków 1990.
  • [13] Zimoch I.: Zintegrowana metoda analizy niezawodności funkcjonowania i bezpieczeństwa systemów zaopatrzenia w wodę. Wydaw. Politechniki Śląskiej, Gliwice 2011.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-85723a15-6b09-4b49-8720-55160a931b89
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.